
Maximum RPM

Taking the RPM Package Manager to the Lim-
it

Edward C. Bailey, Red Hat, Inc.
%ghost description: Paul Nasrat

Start of updates, epoch, rpmbuild, etc: Matthias Saou
Various typo fixes, %check section, documentation on --recompil: Ville Skyttä

Maximum RPM: Taking the RPM Package Manager to the Limit
by Edward C. Bailey
%ghost description: Paul Nasrat
Start of updates, epoch, rpmbuild, etc: Matthias Saou
Various typo fixes, %check section, documentation on --recompil: Ville Skyttä
Copyright © 2000 Red Hat, Inc.

Copyright © 2000 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set forth in the Open Publica-
tion License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/
[http://www.opencontent.org/openpub/]).

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission is obtained from
the copyright holder.

http://www.opencontent.org/openpub/

Table of Contents
Preface ..xiv

Linux and RPM — A Brief History ..xiv
Parts of the book, and who they're for ...xiv
Acknowledgements ..xv

I. RPM and Computer Users — How to Use RPM to Effectively Manage Your Computer16
1. An Introduction to Package Management ..20

What are Packages, and Why Manage Them? ..20
Enter the Package ...21
Manage Your Packages, or They Will Manage You ..21

Package Management: How to Do It? ..22
Ancestors of RPM ..23

RPM Design Goals ...25
Make it easy to get packages on and off the system ...25
Make it easy to verify a package was installed correctly25
Make it easy for the package builder ..26
Make it start with the original source code ..26
Make it work on different computer architectures ...26

What's in a package? ...26
RPM's Package Labels ..26
Labels And Names: Similar, But Distinct ..27
Package-wide Information ...27
Per-file Information ..27

Let's Get Started ..28
2. Using RPM to Install Packages ..29

rpm -i — What does it do? ..30
Performing dependency checks: ..30
Checking for conflicts: ..30
Performing any tasks required before the install: ..30
Deciding what to do with config files: ..31
Unpacking files from the package and putting them in the proper place:31
Performing any tasks required after the install: ...31
Keeping track of what it did: ..31

Performing an Install ..31
URLs — Another Way to Specify Package Files ..31
A warning message you might never see ...33

Two handy options ...33
Getting a bit more feedback with -v ...33
-h: Perfect for the Impatient ...34

Additional options to rpm -i ...34
Getting a lot more information with -vv ..34
--test: Perform Installation Tests Only ..35
--replacepkgs: Install the Package Even If Already Installed36
--replacefiles: Install the Package Even If It Replaces Another Package's Files36
--nodeps: Do Not Check Dependencies Before Installing Package40
--force: The Big Hammer ..41
--excludedocs: Do Not Install Documentation For This Package41
--includedocs: Install Documentation For This Package42
--prefix <path>: Relocate the package to <path>, if possible43
--noscripts: Do Not Execute Pre- and Post-install Scripts44
--percent: Not Meant for Human Consumption ...44
--rcfile <rcfile>: Use <rcfile> As An Alternate rpmrc File44
--root <path>: Use <path> As An Alternate Root ..45
--dbpath <path>: Use <path> To Find RPM Database45
--ftpport <port>: Use <port> In FTP-based Installs45
--ftpproxy <host>: Use <host> As Proxy In FTP-based Installs45
--ignorearch: Do Not Verify Package Architecture ..46
--ignoreos: Do Not Verify Package Operating System ..46

iv

3. Using RPM to Erase Packages ...47
rpm -e — What Does it Do? ..47
Erasing a Package ..48

Getting More Information With -vv ...48
Additional Options ...49

--test — Go Through the Process of Erasing the Package, But Do Not Erase It49
--nodeps: Do Not Check Dependencies Before Erasing Package50
--noscripts — Do Not Execute Pre- and Post-uninstall Scripts50
--rcfile <rcfile> — Read <rcfile> For RPM Defaults51
--root <path> — Use <path> As the Root ..51
--dbpath <path>: Use <path> To Find RPM Database51

rpm -e and Config files ...51
Watch Out! ...52

4. Using RPM to Upgrade Packages ...53
rpm -U — What Does it Do? ...54

Config file magic ...54
Upgrading a Package ..56

rpm -U's Dirty Little Secret ...56
They're Nearly Identical… ...57

--oldpackage: Upgrade To An Older Version ..57
--force: The Big Hammer ..58
--noscripts: Do Not Execute Install and Uninstall Scripts58

5. Getting Information About Packages ..60
rpm -q — What does it do? ...61
The Parts of an RPM Query ...61

Query Commands, Part One: Package Selection ...61
Query Commands, Part Two: Information Selection ...67
Getting a lot more information with -vv ..80
--root <path>: Use <path> As An Alternate Root ..81
--rcfile <rcfile>: Use <rcfile> As An Alternate rpmrc File81
--dbpath <path>: Use <path> To Find RPM Database81

A Few Handy Queries ...81
Finding Config Files Based on a Program Name ..81
Learning More About an Uninstalled Package ...82
Finding Documentation for a Specific Package ..82
Finding Similar Packages ..82
Finding Recently Installed Packages, Part I ...83
Finding Recently Installed Packages, Part II ..83
Finding the Largest Installed Packages ...83

6. Using RPM to Verify Installed Packages ...85
rpm -V — What Does it Do? ...85

What Does it Verify? ..86
When Verification Fails — rpm -V Output ...88

Other Verification Failure Messages ..89
Selecting What to Verify, and How ...89

The Package Label — Verify an Installed Package Against the RPM Database89
-a — Verify All Installed Packages Against the RPM Database90
-f <file> — Verify the Package Owning <file> Against the RPM Database90
-p <file> — Verify Against a Specific Package File ..91
-g <group> — Verify Packages Belonging To <group>91
--nodeps: Do Not Check Dependencies During Verification92
--noscripts: Do Not Execute Verification Script ...92
--nofiles: Do Not Verify File Attributes ..93
-v — Display Additional Information ...93
-vv — Display Debugging Information ..94
--dbpath <path>: Use <path> To Find RPM Database94
--root <path>: Set Alternate Root to <path> ...95
--rcfile <rcfile>: Set Alternate rpmrc file to <rcfile>95

We've Lied to You… ..95
RPM Controls What Gets Verified ..95

7. Using RPM to Verify Package Files ...97
rpm -K — What Does it Do? ...97

Pretty Good Privacy: RPM's Assistant ..97

Max. RPM

v

Configuring PGP for rpm -K ...97
Using rpm -K ...98

-v — Display Additional Information ...99
When the Package is Not Signed ... 100
When You Are Missing the Correct Public Key ... 100
When a Package Just Doesn't Verify .. 100
--nopgp — Do Not Verify Any PGP Signatures ... 102
-vv — Display Debugging Information .. 102
--rcfile <rcfile>: Use <rcfile> As An Alternate rpmrc File 103

8. Miscellanea ... 104
Other RPM Options .. 104

--rebuilddb — Rebuild RPM database ... 104
--initdb — Create a New RPM Database .. 105
--quiet — Produce as little output as possible .. 106
--help — Display a help message .. 106
--version — Display the current RPM version ... 107

Using rpm2cpio .. 107
rpm2cpio — What does it do? ... 107
A more real-world example — Listing the files in a package file 108
Extracting one or more files from a package file ... 108

Source Package Files and How To Use Them .. 109
A gentle introduction to source code .. 110
Do you really need more information than this? ... 110
So what can I do with it? ... 110
Stick with us! .. 112

II. RPM and Developers — How to Distribute Your Software More Easily With RPM 113
9. The Philosophy Behind RPM .. 118

Pristine Sources ... 118
Easy Builds ... 119

Reproducible Builds ... 119
Unattended Builds .. 119

Multi-architecture/operating system Support ... 119
Easier For Your Users ... 120

Easy Upgrades ... 120
Intelligent Configuration File Handling .. 120
Powerful Query Capabilities ... 120
Easy Package Verification ... 120

To Summarize… .. 120
10. The Basics of Developing With RPM .. 121

The Inputs .. 121
The Sources .. 121
The Patches .. 121
The Spec File .. 122

The Engine: RPM .. 123
The Outputs .. 123

The Source Package File ... 123
The Binary RPM .. 124

And Now… .. 124
11. Building Packages: A Simple Example .. 125

Creating the Build Directory Structure ... 125
Getting the Sources .. 125
Creating the Spec File ... 126

The Preamble .. 126
The %prep Section .. 128
The %build Section ... 129
The %install Section .. 129
The %files Section ... 129
The Missing Spec File Sections .. 130

Starting the Build ... 131
When Things Go Wrong .. 134

Problems During the Build ... 134
Testing Newly Built Packages .. 135

12. rpmbuild Command Reference ... 136

Max. RPM

vi

rpmbuild — What Does it Do? .. 137
rpmbuild -bp — Execute %prep ... 137
rpmbuild -bc — Execute %prep, %build ... 138
rpmbuild -bi — Execute %prep, %build, %install, %check 139
rpmbuild -bb — Execute %prep, %build, %install, %check, package (bin) 141
rpmbuild -ba — Execute %prep, %build, %install, %check, package (bin, src) 142
rpmbuild -bl — Check %files list .. 143
--short-circuit — Force build to start at particular stage 145
--buildarch <arch> — Perform Build For the <arch> Architecture 147
--buildos <os> — Perform Build For the <os> Operating System 147
--sign — Add a Digital Signature to the Package .. 148
--test — Create, Save Build Scripts For Review ... 149
--clean — Clean up after build ... 150
--buildroot <path> — Execute %install using <path> as the root 151
--timecheck <secs> — Print a warning if files to be packaged are over <secs> old
.. 153
-vv — Display debugging information ... 154
--quiet — Produce as Little Output as Possible .. 155
--rcfile <rcfile> — Set alternate rpmrc file to <rcfile> 155

Other Build-related Commands ... 155
rpmbuild --recompile — What Does it Do? ... 156
rpmbuild --rebuild — What Does it Do? ... 156

13. Inside the Spec File ... 159
Comments: Notes Ignored by RPM ... 159
Tags: Data Definitions .. 159

Package Naming Tags ... 160
Descriptive Tags .. 161
Dependency Tags ... 164
Architecture- and Operating System-Specific Tags ... 167
Directory-related Tags .. 169
Source and Patch Tags .. 170

Scripts: RPM's Workhorse ... 173
Build-time Scripts .. 173
Install/Erase-time Scripts ... 176
Verification-Time Script — The %verifyscript Script 178

Macros: Helpful Shorthand for Package Builders ... 178
The %setup Macro .. 178
The %patch Macro .. 187

The %files List .. 190
Directives For the %files list .. 190

File-related Directives ... 190
Directory-related Directives ... 194

The Lone Directive: %package .. 197
-n <string> — Use <string> As the Entire Subpackage Name 198

Conditionals .. 199
The %ifarch Conditional .. 199
The %ifnarch Conditional .. 199
The %ifos Conditional .. 200
The %ifnos Conditional .. 200
The %else Conditional .. 200
The %endif Conditional .. 200

14. Adding Dependency Information to a Package .. 202
An Overview of Dependencies ... 202
Automatic Dependencies ... 202

The Automatic Dependency Scripts ... 203
Automatic Dependencies: An Example ... 204
The autoreqprov, autoreq, and autoprov Tags — Disable Automatic Dependency Pro-
cessing ... 205

Manual Dependencies ... 205
The Requires Tag .. 205
The Conflicts Tag .. 208
The Provides Tag .. 208

To Summarize… .. 209

Max. RPM

vii

15. Making a Relocatable Package .. 211
Why relocatable packages? .. 211
The prefix tag: Relocation Central .. 211
Relocatable Wrinkles: Things to Consider ... 212

%files List Restrictions ... 213
Relocatable Packages Must Contain Relocatable Software 213
The Relocatable Software Is Referenced By Other Software 214

Building a Relocatable Package .. 214
Tying Up the Loose Ends .. 216
Test-Driving a Relocatable Package ... 216

16. Making a Package That Can Build Anywhere ... 220
Using Build Roots in a Package .. 220

Some Things to Consider ... 223
Having RPM Use a Different Build Area .. 224

Setting up a Build Area ... 224
Directing RPM to Use the New Build Area ... 225
Performing a Build in a New Build Area ... 225

Specifying File Attributes .. 227
%attr — How Does It Work? .. 227
Betcha Thought We Forgot… ... 228

17. Adding PGP Signatures to a Package .. 230
Why Sign a Package? .. 230
Getting Ready to Sign ... 230

Preparing PGP: Creating a Key Pair ... 230
Preparing RPM .. 232

Signing Packages ... 233
--sign — Sign a Package At Build-Time ... 233
--resign — Replace a Package's Signature(s) ... 234
--addsign — Add a Signature To a Package .. 235

18. Creating Subpackages .. 238
What Are Subpackages? .. 238
Why Are They Needed? .. 238
Our Example Spec File: Subpackages Galore! ... 238
Spec File Changes For Subpackages .. 239

The Subpackage's "Preamble" ... 239
The %files List .. 243
Install- and Erase-time Scripts .. 245

Build-Time Scripts: Unchanged For Subpackages .. 246
Our Spec File: One Last Look… ... 247

Building Subpackages ... 248
Giving Subpackages the Once-Over ... 249

19. Building Packages for Multiple Architectures and Operating Systems 252
Architectures and Operating Systems: A Primer ... 252

Let's Just Call Them Platforms .. 252
What Does RPM Do To Make Multi-Platform Packaging Easier? 253

Automatic Detection of Build Platform .. 253
Automatic Detection of Install Platform .. 253
Platform-Dependent Tags .. 253
Platform-Dependent Conditionals .. 253

Build and Install Platform Detection .. 253
Platform-Specific rpmrc Entries .. 253
Overriding Platform Information At Build-Time .. 255
Overriding Platform Information At Install-Time ... 256

optflags — The Other rpmrc File Entry .. 256
Platform-Dependent Tags .. 256

The excludexxx Tag .. 256
The exclusivexxx Tag .. 257

Platform-Dependent Conditionals .. 257
Common Features of All Conditionals .. 258
%ifxxx ... 259
%ifnxxx ... 259

Hints and Kinks ... 260
20. Real-World Package Building ... 261

Max. RPM

viii

An Overview of Amanda ... 261
Initial Building Without RPM ... 261

Setting Up A Test Build Area ... 261
Getting Software to build ... 262
Installing and testing ... 264

Initial Building With RPM ... 265
Generating patches ... 265
Making a first-cut spec file ... 267
Getting the original sources unpacked .. 269
Getting patches properly applied ... 270
Letting RPM do the Building .. 272
Letting RPM do the Installing ... 272
Testing RPM's Handiwork ... 273

Package Building ... 273
Creating the %files list ... 275
Testing those first packages .. 280
Finishing Touches .. 281

21. A Guide to the RPM Library API ... 288
An Overview of rpmlib ... 288
rpmlib Functions .. 288

Error Handling .. 288
Getting Package Information .. 289
Variable Manipulation .. 290
rpmrc-Related Information ... 291
RPM Database Manipulation .. 293
RPM Database Traversal ... 294
RPM Database Search ... 295
Package Manipulation ... 298
Package And File Verification .. 301
Dependency-Related Operations ... 302
Diagnostic Output Control ... 304
Signature Verification ... 305
Header Manipulation .. 306
Header Entry Manipulation .. 308
Header Iterator Support ... 310

Example Code ... 311
Example #1 ... 311
Example #2 ... 313
Example #3 ... 316

III. Appendixes .. 319
A. Format of the RPM File ... 324

RPM File Naming Convention .. 324
RPM File Format ... 325

Parts of an RPM File ... 325
The Lead .. 325
Wanted: A New RPM Data Structure ... 327
The Signature .. 329
The Header ... 332
The Archive .. 335

Tools For Studying RPM Files .. 336
Identifying RPM files with the file(1) command ... 337

B. The rpmrc File ... 339
Using the --showrc Option .. 339
Different Places an rpmrc File Resides ... 340

/usr/lib/rpmrc ... 340
/etc/rpmrc ... 342
.rpmrc in the user's login directory ... 342
File indicated by the --rcfile option .. 342

rpmrc File Syntax ... 342
rpmrc File Entries .. 343

arch_canon .. 343
os_canon .. 343
buildarchtranslate .. 343

Max. RPM

ix

buildostranslate .. 344
arch_compat .. 344
os_compat ... 344
builddir ... 345
buildroot ... 345
cpiobin .. 345
dbpath .. 345
defaultdocdir ... 345
distribution .. 345
excludedocs .. 345
ftpport .. 346
ftpproxy .. 346
messagelevel ... 346
netsharedpath .. 346
optflags ... 346
packager .. 347
pgp_name .. 347
pgp_path ... 347
require_distribution .. 347
require_icon ... 347
require_vendor .. 348
rpmdir .. 348
signature ... 348
sourcedir ... 348
specdir .. 348
srcrpmdir .. 348
timecheck .. 349
tmppath .. 349
topdir .. 349
vendor ... 349

C. Concise RPM Command Reference ... 350
Global Options .. 350
Informational Options ... 350
Query Mode .. 350

Package Specification Options To Query Mode ... 350
Information Selection Options To Query Mode .. 351

Verify Mode ... 351
Options To Verify Mode ... 351

Install Mode .. 352
Options To Install Mode .. 352

Upgrade Mode ... 352
Options To Upgrade Mode ... 352

Erase Mode ... 353
Options To Erase Mode ... 353

Build Mode ... 353
Build Mode Stages ... 353
Options To Build Mode ... 354

Rebuild Mode .. 354
Options To Rebuild Mode .. 354

Recompile Mode .. 354
Options To Recompile Mode .. 354

Resign Mode ... 355
Options To Resign Mode ... 355

Add Signature Mode ... 355
Options To Add Signature Mode ... 355

Check Signature Mode .. 355
Options To Check Signature Mode .. 355

Initialize Database Mode ... 355
Options to Initialize database Mode ... 355

Rebuild Database Mode .. 355
Options to Rebuild Database Mode .. 356

D. Available Tags For --queryformat .. 357
List of --queryformat Tags ... 357

Max. RPM

x

The NAME Tag .. 357
The VERSION Tag ... 357
The RELEASE Tag ... 357
The EPOCH Tag ... 357
The SUMMARY Tag ... 358
The DESCRIPTION Tag ... 358
The BUILDTIME Tag ... 358
The BUILDHOST Tag ... 358
The INSTALLTIME Tag ... 358
The SIZE Tag ... 358
The DISTRIBUTION Tag .. 358
The VENDOR Tag .. 359
The GIF Tag ... 359
The XPM Tag ... 359
The LICENSE Tag .. 359
The PACKAGER Tag .. 359
The GROUP Tag ... 359
The CHANGELOG Tag ... 359
The SOURCE Tag ... 359
The PATCH Tag ... 359
The URL Tag .. 360
The OS Tag .. 360
The ARCH Tag ... 360
The PREIN Tag .. 360
The POSTIN Tag .. 360
The PREUN Tag ... 360
The POSTUN Tag ... 360
The FILENAMES Tag ... 360
The FILESIZES Tag ... 361
The FILESTATES Tag .. 361
The FILEMODES Tag ... 361
The FILEUIDS Tag ... 361
The FILEGIDS Tag ... 361
The FILERDEVS Tag .. 361
The FILEMTIMES Tag ... 362
The FILEMD5S Tag .. 362
The FILELINKTOS Tag .. 362
The FILEFLAGS Tag .. 362
The ROOT Tag ... 362
The FILEUSERNAME Tag .. 362
The FILEGROUPNAME Tag ... 362
The EXCLUDE Tag .. 363
The EXCLUSIVE Tag ... 363
The ICON Tag .. 363
The SOURCERPM Tag ... 363
The FILEVERIFYFLAGS Tag ... 363
The ARCHIVESIZE Tag ... 363
The PROVIDES Tag ... 363
The REQUIREFLAGS Tag .. 363
The REQUIRENAME Tag ... 364
The REQUIREVERSION Tag .. 364
The NOSOURCE Tag .. 364
The NOPATCH Tag .. 364
The CONFLICTFLAGS Tag .. 364
The CONFLICTNAME Tag ... 364
The CONFLICTVERSION Tag .. 364
The DEFAULTPREFIX Tag .. 365
The BUILDROOT Tag .. 365
The INSTALLPREFIX Tag .. 365
The EXCLUDEARCH Tag ... 365
The EXCLUDEOS Tag .. 365
The EXCLUSIVEARCH Tag ... 365
The EXCLUSIVEOS Tag ... 365

Max. RPM

xi

The AUTOREQPROV, AUTOREQ, and AUTOPROV Tags 365
The RPMVERSION Tag .. 366
The TRIGGERSCRIPTS Tag ... 366
The TRIGGERNAME Tag ... 366
The TRIGGERVERSION Tag .. 366
The TRIGGERFLAGS Tag .. 366
The TRIGGERINDEX Tag .. 366
The VERIFYSCRIPT Tag .. 366

E. Concise Spec File Reference ... 367
Comments .. 367
The Preamble .. 367

Package Naming Tags ... 367
Descriptive Tags .. 368
Dependency Tags ... 370
Architecture- and Operating System-Specific Tags ... 372
Directory-related Tags .. 373
Source and Patch Tags .. 374

Scriptlets .. 375
Build Scriptlets .. 375
Install/Erase Scriptlets ... 376
%verifyscript Directive .. 378

Macros ... 378
The %setup Macro .. 378
The %patch Macro .. 380

The %files List .. 381
Directives For the %files list .. 381

File-related Directives ... 382
Directory-related Directives ... 383

%package Directive .. 384
The %package -n Option .. 384

Conditionals .. 384
The %ifarch Conditional .. 384
The %ifnarch Conditional .. 385
The %ifos Conditional .. 385
The %ifnos Conditional .. 385
The %else Conditional .. 385
The %endif Conditional .. 386

F. RPM-related Resources ... 387
Where to Get RPM ... 387

FTP Sites .. 387
What Do I Need? ... 387

Where to Talk About RPM .. 389
The rpm-list Mailing List ... 389
The redhat-list Mailing List ... 389
The redhat-digest Mailing List ... 390

RPM On the World Wide Web ... 390
RPM's License ... 391
GNU GENERAL PUBLIC LICENSE .. 391

Preamble .. 391
GNU GENERAL PUBLIC LICENSE .. 392
How to Apply These Terms to Your New Programs .. 395

G. An Introduction to PGP ... 397
PGP — Privacy for Regular People ... 397

Keys your Locksmith Wouldn't Understand .. 397
Are RPM Packages Encrypted? ... 398
Do All RPM Packages Have Digital Signatures? .. 398
So Much to Cover, So Little Time ... 399

Installing PGP for RPM's Use ... 399
Obtaining PGP .. 399
Building PGP .. 401
Ready to Go! ... 401

Index ... 402

Max. RPM

xii

List of Tables
2.1. rpm -i Command Syntax ...29
3.1. rpm -e Command Syntax ..47
4.1. rpm -U Command Syntax ..53
5.1. rpm -q Command Syntax ..60
6.1. rpm -V Command Syntax ..85
6.2. Verification Versus File Types ..95
7.1. rpm -K Command Syntax ...97
12.1. rpmbuild Command Syntax ... 136

xiii

Preface
Linux and RPM — A Brief History

Welcome! This is a book about the Red Hat Package Manager, or RPM Package Manager, known to
its friends as simply RPM. The history of RPM is inextricably linked to the history of GNU/Linux,
so a bit of GNU/Linux history may be in order. GNU/Linux is a full-featured implementation of a
UNIX-like operating system, and has taken the computing world by storm.

And for a good reason — When choosing GNU/Linux, an Intel-based personal computer that had
previously been prisoner of the dreaded Windows hourglass is transformed into a fully multitasking,
network capable, personal workstation. All for the cost of the time required to download, install, and
configure the software.

Of course, if you're not the type to tinker with downloaded software, many companies have created
CDROMs containing GNU/Linux and associated software. The amount of tinkering required with
these distributions has varied widely. The phrase "You get what you pay for" is never more true
than in the area of GNU/Linux distributions.

One distribution bears the curious name "Red Hat Linux". Produced by a company of the same
name, this GNU/Linux distribution was different. One of the key decisions a new Linux user needs
to make is which of the many different parts of the distribution to install on their system. Most dis-
tributions use some sort of menu, making it easy to pick and choose. Red Hat Linux is no different.

But what is different about Red Hat Linux is that the creators of the distribution wanted their cus-
tomers to have the the ability to make the same choices long after the installation process was over.
Some commercial UNIX systems have this capability (called "package management"), and a few
GNU/Linux distributors were trying to come up with something similar, but none had at the time the
extensive scope present in RPM.

Over time, Red Hat Linux has become the most popular distribution available today. For it to edge
out the previous leader (Slackware) in just two years is amazing. There has to be a reason for this
kind of success, and a good part of the reason is RPM. But until the first edition of this book, there
had been precious little in terms of RPM documentation. You could say that RPM's ease of use has
made detailed instructions practically unnecessary, and you'd be right.

However, there are always people that want to know more about their computers, and given the pop-
ularity of Red Hat Linux, this alone would have made a book on RPM worthwhile. But there's more
to the story than that.

There is a truism in the world of Free Software, that goes something like this: If there's a better solu-
tion freely available, use it! RPM is no exception to the rule. Put under the terms of the GNU Gener-
al Public License (Meaning: RPM cannot be made proprietary by anyone, not even Bill Gates),
RPM started to attract the attention of others in the Linux, Unix, and free software communities.

At present, RPM is used by several commercial software companies producing Linux applications.
They find that RPM makes it easier to get their products into the hands of their customers. They also
find that it can even make the process of building their software easier. (Those of you that develop
software for fun and profit, stick around — the second half of this book will show you everything
you need to know to get your software "RPM-ized")

People have also ported RPM to several commercial UNIX systems, including DEC's Digital Unix,
IBM's AIX, and Silicon Graphics' IRIX. Why? The simple answer is that it makes it easier to install,
upgrade, and de-install software. If all these people are using RPM, shouldn't you?

Parts of the book, and who they're for
This book is divided into two major sections. The first section is for anyone that needs to know how
to use RPM on their system. Given the state of the GNU/Linux arena today, this could mean just

xiv

about anyone, including people that are new to GNU/Linux, or even UNIX. So those of you that
think that

ls -FAl !* | less

is serious magic (or maybe even a typing error), relax — we'll explain everything you'll need to
know in the first section.

In the book's second half, we'll be covering all there is to know about building packages using RPM.
Since software engineering on GNU/Linux and UNIX systems requires in-depth knowledge of the
operating system, available tools, and basic programming concepts, we're going to assume that the
reader has sufficient background in these areas. Feel free to browse through the second half, but
don't hesitate to seek additional sources of information if you find the going a bit tough.

Acknowledgements
Writing a book is similar to entering a long-term relationship with an obsessive partner. Throughout
the nine months it took to write this book, life went on: job changes, births, deaths, and even a hur-
ricane. Throughout it all, the book demanded constant attention. Therefore, I'd like to thank the
people that made it possible to focus on the book to the exclusion of nearly everything else. My
wife, Deb and son, Matt supported and encouraged me throughout, even when I was little more than
a reclusive houseguest hunched over the computer in the study. Additionally, Deb acted as my edit-
or and indexer, eventually reading the book completely three times! Thank you both.

Thanks also to Marc Ewing and Erik Troan, RPM architects extraordinaire. Without their program-
ming savvy, RPM wouldn't be the elegant tool it is. Without their boundless patience, my many
questions would have gone unanswered, and this book would have been much less than it is now. I
hope you find this book a worthy companion to your programming handiwork.

Rik Faith provided some much-needed information about PMS and PM, two of RPM's ancestors.
Thank you!

Finally a great big thank you goes to Jessica and the gang at L'il Dinos, Jennifer and her crew at the
Cary Barnes & Noble coffee shop, and Mom and her "kids" at Schlotzsky's Deli in Durham. If all of
you hadn't let me sit around for hours writing, this book wouldn't be nearly as fat as it is. And
neither would I!

February, 1997 Cary, North Carolina

Preface

xv

Part I. RPM and Computer Users —
How to Use RPM to Effectively

Manage Your Computer

Table of Contents
1. An Introduction to Package Management ..20

What are Packages, and Why Manage Them? ..20
Enter the Package ...21
Manage Your Packages, or They Will Manage You ..21

Package Management: How to Do It? ..22
Ancestors of RPM ..23

RPM Design Goals ...25
Make it easy to get packages on and off the system ...25
Make it easy to verify a package was installed correctly25
Make it easy for the package builder ..26
Make it start with the original source code ..26
Make it work on different computer architectures ...26

What's in a package? ...26
RPM's Package Labels ..26
Labels And Names: Similar, But Distinct ..27
Package-wide Information ...27
Per-file Information ..27

Let's Get Started ..28
2. Using RPM to Install Packages ..29

rpm -i — What does it do? ..30
Performing dependency checks: ..30
Checking for conflicts: ..30
Performing any tasks required before the install: ..30
Deciding what to do with config files: ..31
Unpacking files from the package and putting them in the proper place:31
Performing any tasks required after the install: ...31
Keeping track of what it did: ..31

Performing an Install ..31
URLs — Another Way to Specify Package Files ..31
A warning message you might never see ...33

Two handy options ...33
Getting a bit more feedback with -v ...33
-h: Perfect for the Impatient ...34

Additional options to rpm -i ...34
Getting a lot more information with -vv ..34
--test: Perform Installation Tests Only ..35
--replacepkgs: Install the Package Even If Already Installed36
--replacefiles: Install the Package Even If It Replaces Another Package's Files36
--nodeps: Do Not Check Dependencies Before Installing Package40
--force: The Big Hammer ..41
--excludedocs: Do Not Install Documentation For This Package41
--includedocs: Install Documentation For This Package42
--prefix <path>: Relocate the package to <path>, if possible43
--noscripts: Do Not Execute Pre- and Post-install Scripts44
--percent: Not Meant for Human Consumption ...44
--rcfile <rcfile>: Use <rcfile> As An Alternate rpmrc File44
--root <path>: Use <path> As An Alternate Root ..45
--dbpath <path>: Use <path> To Find RPM Database45
--ftpport <port>: Use <port> In FTP-based Installs45
--ftpproxy <host>: Use <host> As Proxy In FTP-based Installs45
--ignorearch: Do Not Verify Package Architecture ..46
--ignoreos: Do Not Verify Package Operating System ..46

3. Using RPM to Erase Packages ...47
rpm -e — What Does it Do? ..47
Erasing a Package ..48

Getting More Information With -vv ...48
Additional Options ...49

17

--test — Go Through the Process of Erasing the Package, But Do Not Erase It49
--nodeps: Do Not Check Dependencies Before Erasing Package50
--noscripts — Do Not Execute Pre- and Post-uninstall Scripts50
--rcfile <rcfile> — Read <rcfile> For RPM Defaults51
--root <path> — Use <path> As the Root ..51
--dbpath <path>: Use <path> To Find RPM Database51

rpm -e and Config files ...51
Watch Out! ...52

4. Using RPM to Upgrade Packages ...53
rpm -U — What Does it Do? ...54

Config file magic ...54
Upgrading a Package ..56

rpm -U's Dirty Little Secret ...56
They're Nearly Identical… ...57

--oldpackage: Upgrade To An Older Version ..57
--force: The Big Hammer ..58
--noscripts: Do Not Execute Install and Uninstall Scripts58

5. Getting Information About Packages ..60
rpm -q — What does it do? ...61
The Parts of an RPM Query ...61

Query Commands, Part One: Package Selection ...61
Query Commands, Part Two: Information Selection ...67
Getting a lot more information with -vv ..80
--root <path>: Use <path> As An Alternate Root ..81
--rcfile <rcfile>: Use <rcfile> As An Alternate rpmrc File81
--dbpath <path>: Use <path> To Find RPM Database81

A Few Handy Queries ...81
Finding Config Files Based on a Program Name ..81
Learning More About an Uninstalled Package ...82
Finding Documentation for a Specific Package ..82
Finding Similar Packages ..82
Finding Recently Installed Packages, Part I ...83
Finding Recently Installed Packages, Part II ..83
Finding the Largest Installed Packages ...83

6. Using RPM to Verify Installed Packages ...85
rpm -V — What Does it Do? ...85

What Does it Verify? ..86
When Verification Fails — rpm -V Output ...88

Other Verification Failure Messages ..89
Selecting What to Verify, and How ...89

The Package Label — Verify an Installed Package Against the RPM Database89
-a — Verify All Installed Packages Against the RPM Database90
-f <file> — Verify the Package Owning <file> Against the RPM Database90
-p <file> — Verify Against a Specific Package File ..91
-g <group> — Verify Packages Belonging To <group>91
--nodeps: Do Not Check Dependencies During Verification92
--noscripts: Do Not Execute Verification Script ...92
--nofiles: Do Not Verify File Attributes ..93
-v — Display Additional Information ...93
-vv — Display Debugging Information ..94
--dbpath <path>: Use <path> To Find RPM Database94
--root <path>: Set Alternate Root to <path> ...95
--rcfile <rcfile>: Set Alternate rpmrc file to <rcfile>95

We've Lied to You… ..95
RPM Controls What Gets Verified ..95

7. Using RPM to Verify Package Files ...97
rpm -K — What Does it Do? ...97

Pretty Good Privacy: RPM's Assistant ..97
Configuring PGP for rpm -K ...97
Using rpm -K ...98

-v — Display Additional Information ...99
When the Package is Not Signed ... 100
When You Are Missing the Correct Public Key ... 100

RPM and Computer Users — How
to Use RPM to Effectively Manage

18

When a Package Just Doesn't Verify .. 100
--nopgp — Do Not Verify Any PGP Signatures ... 102
-vv — Display Debugging Information .. 102
--rcfile <rcfile>: Use <rcfile> As An Alternate rpmrc File 103

8. Miscellanea ... 104
Other RPM Options .. 104

--rebuilddb — Rebuild RPM database ... 104
--initdb — Create a New RPM Database .. 105
--quiet — Produce as little output as possible .. 106
--help — Display a help message .. 106
--version — Display the current RPM version ... 107

Using rpm2cpio .. 107
rpm2cpio — What does it do? ... 107
A more real-world example — Listing the files in a package file 108
Extracting one or more files from a package file ... 108

Source Package Files and How To Use Them .. 109
A gentle introduction to source code .. 110
Do you really need more information than this? ... 110
So what can I do with it? ... 110
Stick with us! .. 112

Your Computer

19

Chapter 1. An Introduction to
Package Management
What are Packages, and Why Manage Them?

To answer that question, let's go back to the basics for a moment. Computers process information. In
order for this to happen, there are some prerequisites:

• A computer (Obviously!).

• Some information to process (Also obvious!).

• A program to do the processing (Still pretty obvious!).

Unless these three things come together very little is going to happen, information processing-wise.
But each of these items have their own requirements that need to be satisfied before things can get
exciting.

Take the computer, for example. While it needs things like electricity and a cool, dry place to oper-
ate, it also needs access to the other two items — information and programs — in order to do its
thing. The way to get information and programs into a computer is to place them in the computer's
mass storage. These days, mass storage invariably means a disk drive. Putting information and pro-
grams on the disk drive means that they are stored as files. So much for the computer's part in this.

OK, let's look at the information. Does information have any particular needs? Well, it needs suffi-
cient space on the disk drive, but more importantly, it needs to be in the proper format for the pro-
gram that will be processing it. That's it for information.

Finally, we have the program. What does it need? Like the information, it needs sufficient disk
space on the disk drive. But there are many other things that it may need:

• It may need information to process, in the correct format, named properly, and in the appropriate
area on a disk drive somewhere.

• It may need one or more configuration files. These are files that control the program's behavior
and permit some level of customization. Like the information, these files must be in the proper
format, named properly, and in the appropriate area on a disk. We'll be referring to them by their
other name — config files — throughout the book.

• It may need work areas on a disk, named properly, and located in the appropriate area.

• It may even need other programs, each with their own requirements.

• Although not strictly required by the program itself, the program may come with one or more
files containing documentation. These files can be very handy for the humans trying to get the
program to do their bidding!

As you can imagine, this can get pretty complicated. It's not so bad once everything is set up prop-
erly, but how do things get set up properly in the first place? There are two possibilities:

1. After reading the documentation that comes with the program you'd like to use, you copy the
various programs, configuration files, and information onto your computer, making sure they
are all named correctly, are located in the proper place, and that there is sufficient disk space to
hold them all. You make the appropriate changes to the configuration file(s). Finally, you run
any setup programs that are necessary, giving them whatever information they require to do
their job.

20

2. You let the computer do it.

If it seems like the first choice isn't so bad, consider how many files you'll need to keep track of. On
a typical Linux system, it's not unusual to have over 20,000 different files. That's a lot of document-
ation reading, file copying, and configuring! And what happens when you want a newer version of a
program? More of the same!

Some people think the second alternative is easier. RPM was made for them.

Enter the Package
When you consider that computers are very good at keeping track of large amounts of data, the idea
of giving your computer the job of riding herd over 20,000 files seems like a good one. And that's
exactly what package management software does. But what is a "package"?

A package in the computer sense is very similar to a package in the physical sense. Both are meth-
ods of keeping related objects together in the same place. Both need to be opened before the con-
tents can be used. Both can have a "packing slip" taped to the side, identifying the contents.

Normally, package management systems take all the various files containing programs, data, docu-
mentation, and configuration information, and place them in one specially formatted file — a pack-
age file. In the case of RPM, the package file is sometimes called a "package", a ".rpm file", or even
an "RPM". All mean the same thing — a package containing software meant to be installed using
RPM.

What types of software are normally found in a package? There are no hard and fast rules, but nor-
mally a package's contents consist of one of the following types of software:

• A collection of one or more programs that perform a single well-defined task. This is normally
what people think of as an "application". Word processors and programming languages would fit
into this category.

• A specific part of an operating system. Examples might be system initialization scripts, a partic-
ular command shell, or the software required to support a web server, for example.

Advantages of a Package

One of the most obvious benefits to having a package is that the package is one easily manageable
chunk. If you move it from one place to another, there's no risk of any part getting left behind. But
although this is the most obvious advantage, it's not the biggest one.

The biggest advantage is that the package can contain the knowledge about what it takes to install it-
self on your computer. And if the package contains the steps required to install itself, the package
can also contain the steps required to uninstall itself. What used to be a painful manual process is
now a straightforward procedure. What used to be a mass of 20,000 files becomes a couple hundred
packages.

Manage Your Packages, or They Will Manage You
A couple hundred? Even though the use of packages has decreased the complexity of managing a
system by an order of magnitude, it hasn't yet gotten to the level of being a "no-brainer". It's still ne-
cessary to keep track of what packages are installed on your system. And if there are some packages
that require other packages in order to install or operate correctly, these should be tracked as well.

Packages Lead Active Lives

If you start looking at a computer system as a collection of packages, you'll find that a distinct set of
operations will take place on those packages time and time again:

An Introduction to Package Manage-
ment

21

• New packages are installed. Maybe it's a spreadsheet you'll use to keep track of expenses, or the
latest shoot-em-up game, but in either case it's new and you want it.

• Old packages are replaced with newer versions. Whoever wrote the word processor you use
daily, comes out with a new version. You'll probably want to install the new version and remove
the old one.

• Packages are removed entirely. Perhaps that over-hyped strategy game just didn't cut it. You
have better things to do with that disk space, so get rid of it!

With this much activity going on, it's easy to lose track of things. What types of package informa-
tion should be available to keep you informed?

Keeping Track of Packages

Just as there are certain operations that are performed on packages, there are also certain types of in-
formation that will make it easier to make sense of the packages installed on your system:

• Certainly you'd like to be able to see what packages are installed. It's easy to forget if that fax
program you tried a few months ago is still installed or not.

• It would be nice to be able to get more detailed information on a specific package. This might
consist of anything from the date the package was installed, to a list of files it installed on your
system.

• Being able to access this information in a variety of ways can be helpful, too. Instead of simply
finding out what files a package installed, it might be handy to be able to name a particular file
and find out which package installed it.

• If this amount of detail is possible, then it should be possible to see if the way a package is
presently installed varies from the way it was originally installed. It's not at all unusual to make
a mistake and delete one file — or a hundred. Being able to tell if one or more packages are
missing files could greatly simplify the process of getting an ailing system back on its feet again.

• Files containing configuration information can be a real headache. If it were possible to pay ex-
tra attention to these files and make sure any changes made to them weren't lost, life would cer-
tainly be a lot easier.

Package Management: How to Do It?
Well, all that sounds great — easy install, upgrade, and deletion of packages; getting package in-
formation presented several different ways; making sure packages are installed correctly; and even
tracking changes to config files. But how do you do it?

As mentioned above, the obvious answer is to let the computer do it. Many groups have tried to cre-
ate package management software. There are two basic approaches:

1. Some package management systems concentrate on the specific steps required to manipulate a
package.

2. Other package management systems take a different approach, keeping track of the files on the
system and manipulating packages by concentrating on the files involved.

Each approach has its good and bad points. In the first method, it's easy to install new packages,
somewhat difficult to remove old ones, and almost impossible to obtain any meaningful information
about installed packages.

The second method makes it easy to obtain information about installed packages, and fairly easy to

An Introduction to Package Manage-
ment

22

install and remove packages. The main problem using this method is that there may not be a well-
defined way to execute any commands required during the installation or removal process.

In practice, no package management system uses one approach or the other — all are a mixture of
the two. The exact mix and design goals will dictate how well a particular package management sys-
tem meets the needs of the people using it. At the time Red Hat started work on their Linux distribu-
tion, there were a number of package management systems in use, each with a different approach to
making package management easier.

Ancestors of RPM
Since this is a book on the Red Hat Package Manager, a good way to see what RPM is all about is to
look at the package management software that preceded RPM.

RPP

RPP was used in the first Red Hat Linux distributions. Many of RPP's features would be recogniz-
able to anyone who has worked with RPM. Some of these innovative features are:

• Simple, one command installation and uninstallation of packages.

• Scripts that can run before and after installation and uninstallation of packages.

• Package verification. The files of individual packages can be checked to see that they haven't
been modified since they were installed.

• Powerful querying. The database of packages can be queried for information about installed
packages, including file lists, descriptions and more.

While RPP possessed several of the features that were important enough to continue on as parts of
RPM today, it had some weaknesses, too:

• It didn't use "pristine sources". Every program is made up of programming language statements
stored in files. This source code is later translated into a binary language that the computer can
execute. In the case of RPP, its packages were based on source code that had been modified spe-
cifically for RPP, hence the sources weren't pristine. This is a bad idea for a number of fairly
technical reasons. Not using pristine sources made it difficult for package developers to keep
things straight, particularly if they were building hundreds of different packages.

• It couldn't guarantee executables were built from packaged sources. The process of building a
package for RPP was such that there was no way to ensure the executable programs were built
from the source code contained in an RPP source package. Once again, this was a problem for
the package builder, especially those who had large numbers of packages to build.

• It had no support for multiple architectures. As people started using RPP, it became obvious that
the package managers that were unable to simplify the process of building packages for more
than one architecture, or type of computer, were going to be at a disadvantage. This was a prob-
lem, particularly for Red Hat, as they were starting to look at the possibility of creating Linux
distributions for other architectures, such as the Digital Alpha.

Even with these problems, RPP was one of the things that made the first Red Hat Linux distribu-
tions unique. Its ability to simplify the process of installing software was a real boon to many of Red
Hat's customers, particularly those with little experience in Linux.

PMS

While Red Hat was busy with RPP, another group of Linux devotees were hard at work with their
package management system. Known as PMS, its development, lead by Rik Faith, attacked the

An Introduction to Package Manage-
ment

23

problem of package management from a slightly different viewpoint.

Like RPP, PMS was used to package a Linux distribution. This distribution was known as the
BOGUS distribution, and all the software in it was built from original unmodified sources. Any
changes that were required were patched in during the processing of building the software. This is
the concept of "pristine sources" and is PMS's most important contribution to RPM. The importance
of pristine sources can not be overstated. It allows the packager to quickly release new version of
software, and to immediately see what changes were made to the software.

The chief disadvantages of PMS were weak querying ability, no package verification, no multiple
architecture support, and poor database design.

PM

Later, Rik Faith and Doug Hoffman, working under contract for Red Hat, produced PM. The design
combined all the important features of RPP and PM, including one command installation and unin-
stallation, scripts run before and after installation and uninstallation, package verification, advanced
querying, and pristine sources. However it retained RPP's and PM's chief disadvantages: weak data-
base design and no support for multiple architectures.

PM was very close to a viable package management system, but it wasn't quite ready for prime time.
It was never used in a commercially available product.

RPM Version 1

With two major forays into package management behind them, Marc Ewing and Erik Troan went to
work on a third attempt. This one would be called the Red Hat Package Manager, or RPM.

Although it built on the experiences of PM, PMS, and RPP, RPM was quite different under the
hood. Written in the Perl programming language for fast development, the creation of RPM version
1 focused on addressing the flaws of its ancestors. In some cases, the flaws were eliminated, while
in others, the problems remained.

Some of the successes of RPM version 1 were:

• Automatic handling of configuration files. The contents of config files are often changed from
what they were in the original package, making it hard for a package manager to know how a
particular config file should be handled during installs, upgrades, and erasures. PM made an at-
tempt at config file handling, but in RPM it was improved further. In many respects, this feature
is the key to RPM's power and flexibility.

• Ease of rebuilding large numbers of packages. By making it easy for people who were trying to
create a Linux distribution consisting of several hundred packages, RPM was a step in the right
direction.

• It was easy to use. Many of the concepts used in RPP had withstood the test of time and were
used in RPM. For instance, the ability to verify the installation of a package was one of the fea-
tures that set RPP apart. It was adapted and expanded in RPM version 1.

But RPM version 1 wasn't perfect. There were a number of flaws, some of them major:

• It was slow. While the use of Perl made RPM's development proceed more quickly, it also
meant that RPM wouldn't run as quickly as it would have, had it been written in C.

• Its database design was fragile. Unfortunately, under RPM version 1 it was not unusual for there
to be problems with the database. While the approach of dedicating a database to package man-
agement was a good idea, the implementation used in RPM version 1 left a lot to be desired.

• It was big. This is another artifact of using Perl. Normally, RPM's size requirements were not an
issue, except for one area. When performing an initial system install, RPM was run from a
small, floppy-based system environment. The need to have Perl available meant space on the

An Introduction to Package Manage-
ment

24

boot floppies was always a problem.

• It didn't support multiple architectures (types of computers) well. The need to have a package
manager support more than one type of computer hadn't been acknowledged before. With RPM
version 1, an initial stab was taken at the problem, but the implementation was incomplete. Non-
etheless, RPM had been ported to a number of other computer systems. It was becoming obvious
that the issue of multi-architecture support was not going away and had to be addressed.

• The package file format wasn't extensible. This made it very difficult to add functionality, since
any change to the file format would cause older versions of RPM to break.

Even though their Linux distribution was a success, and RPM was much of the reason for it, Marc
and Erik knew that some changes were going to be necessary to carry RPM to the next level.

The RPM of Today: Version 2

Looking back on their experiences with RPM version 1, Marc and Erik made a major change to
RPM's design: They rewrote it entirely in C. This did wonderful things to RPM's speed and size.
Querying the database was quicker now, and there was no need to have Perl around just to do pack-
age management.

In addition, the database format was redesigned to improve both performance and reliability. Dis-
playing package information can take as little as a tenth of the time spent in RPM version 1, for ex-
ample.

Realizing RPM's potential in the non-Linux arena, they also created rpmlib, a library of RPM
routines that allow the use of RPM functionality in other programs. RPM's ability to function on
more than one architecture was also enhanced. Finally, the package file format was made more ex-
tensible, clearing the way for future enhancements to RPM.

So is RPM perfect? No program can ever reach perfection, and RPM is no exception. But as a pack-
age manager that can run on several different types of systems, RPM has a lot to offer, and it will
only get better. Let's take a look at the design criteria that drove the development of RPM.

RPM Design Goals
The design goals of RPM could best be summed up with the phrase "something for everyone".
While the main reason for the existence of RPM was to make it easier for Red Hat to build the sev-
eral hundred packages that comprised their Linux distribution, it was not the only reason RPM was
created. Let's take a look at the various requirements the Red Hat team used in their design of RPM:

Make it easy to get packages on and off the system
As we've seen earlier in this chapter, the act of installing a package can involve many complex
steps. Entrusting these steps to a person who may not have the necessary experience is a strategy for
failure. So the goal for RPM was to make it as easy as possible for anyone to install packages. The
same holds true for removing packages. It is a complex and error-prone operation, and one that
RPM should handle for the user.

The other side of this issue is that RPM should give the package builder almost total control in terms
of how the package is installed. The reason for this is simple: if the package builders do their home-
work, their package should install and uninstall properly.

Make it easy to verify a package was installed cor-
rectly

Because software problems are a fact of life, the ability to verify the proper installation of a package
is vital. If done properly, it should be possible to catch a variety of problems, including things such
as missing or modified files.

An Introduction to Package Manage-
ment

25

1 See Appendix A, Format of the RPM File for complete details on the contents of a .rpm file.

Make it easy for the package builder
While we're dedicating an entire book to package management, in reality it should be a small por-
tion of the package builder's job. Why? They've got better things to do! If they are the people that
are actually creating the software to be packaged, that's where they should be spending the majority
of their time.

Even if the package builder isn't actually writing software, they still have better things to do than
worry about building packages. For instance, they may be responsible for building many packages.
The less time spent on building an individual package translates to more packages that can be built.

Make it start with the original source code
Delving a bit more into the package builder's world, it was deemed important that RPM start with
the original, unmodified source code. Why is this so important?

Using the original sources makes it possible to separate the changes required to build the package
from any changes implemented to fix bugs, add new features, or anything else. This is a good thing
for package builders, since many of them are not the original authors of the programs they package.

This separation makes it easy, months down the road, to know exactly what changes were made in
order to get the package to build. This is important when a new version of the packaged software be-
comes available. Many times it's only necessary to apply the original "package building" changes to
the newer software. At worst, the changes provide a starting point to determine what sorts of things
might need to be changed in the new version.

Make it work on different computer architectures
One of the tougher things for a package builder to do is to take a program, make it run on more than
one type of computer, and distribute packages for each. Because RPM makes it easy to take a pro-
gram's original source code, add the changes necessary to get it to build, and produce a package for
each architecture in one step, it can be pretty handy.

What's in a package?
With all the magical things we've claimed that package management software in general (and RPM
in particular) can do, you'd think there was a tiny computer guru bundled in every package.
However, the reality is not that magical. Here's a quick overview of the more important parts of an
RPM package 1 .

RPM's Package Labels
Every package built for RPM has to have a specific set of information that uniquely identifies it. We
call this information a package label. Here are two sample package labels:

• nls-1.0-1

• perl-5.001m-4

While these labels look like they have very little in common, in fact they all follow RPM's package
labeling convention. There are three different components in every package label. Let's look at each
one in order:

Component #1: The Software's Name

Every package label begins with the name of the software. The name may be derived from the name

An Introduction to Package Manage-
ment

26

2 For more information on RPM's signature checking capability, refer to the section called “rpm -K — What Does it Do?”.

of the application packaged, or it may be a name describing a group of related programs bundled to-
gether by the package builder. The software names in the packages listed above are: nls and perl.
As you can see, the software name is separated from the rest of the package label by a dash.

Component #2: The Software's Version

Next in the package label is an identifier that describes the version of the software being packaged.
If the package builder bundled a number of related programs together, the software version is prob-
ably a number of their own choosing. However, if the package consists of one major application, the
software version normally comes directly from the application's developer. The actual version spe-
cification is quite flexible, as can be seen in the examples above. The versions shown are: 1.0 and
5.001m. A dash separates the software version from the remainder of the package label.

Component #3: The Package's Release

The package release is the most unambiguous part of a package label. It is a number chosen by the
package builder. It reflects the number of times the package has been rebuilt using the same version
software. Normally, the rebuilds are due to bugs uncovered after the package has been in use for a
while. By tradition, the package release starts at 1. The package releases in the example above are:
1 and 4.

Labels And Names: Similar, But Distinct
Package labels are used internally by RPM. For example, if you ask RPM to list every installed
package, it will respond with a list of package labels. When a package file is created, part of the file-
name consists of the package label. There is no technical requirement for this, but it does make it
easier to keep track of things.

However, a package file may be renamed, and the new filename won't confuse RPM in the least.
That's because the package label is contained within the file. For a fairly technical view of the inside
of a package file, refer to Appendix A, Format of the RPM File.

Package-wide Information
Some of the information contained in a package is general in nature. This information includes such
items as:

• The date and time the package was built.

• A description of the package's contents.

• The total size of all the files installed by the package.

• Information that allows the package to be grouped with similar packages.

• A digital "signature" that can be used to verify the authenticity and integrity of the package. 2

Per-file Information
Each package also contains information about every file contained in the package. The information
includes:

• The name of every file and where it is to be installed.

• Each file's permissions.

• Each file's owner and group specifications.

An Introduction to Package Manage-
ment

27

3 We'll discuss MD5 checksums in greater detail in the section called “MD5 Checksum”.

• The MD5 checksum of each file. 3

• The file's contents.

Let's Get Started
To summarize, a package management system uses the computer to keep track of all the various bits
and pieces that comprise an application or an entire operating system. Most package management
systems use a specially formatted file to keep everything together in a single, easily manageable en-
tity, or package. Additionally, package management systems tend to provide one or more of the fol-
lowing functions:

• Installing new packages.

• Removing old packages.

• Upgrading from an old package to a new one.

• Obtaining information about installed packages.

RPM has been designed with Red Hat's past package management experiences in mind. PM and
RPP provided most of these functions with varying degrees of success. Marc Ewing and Erik Troan
have worked hard to make RPM better than its predecessors in every way. Now it's time to see how
they did, and learn how to use RPM!

An Introduction to Package Manage-
ment

28

Chapter 2. Using RPM to Install
Packages

Table 2.1. rpm -i Command Syntax

rpm -i (or --install) options file1.rpm … fileN.rpm

Parameters

file1.rpm … fileN.rpm One or more RPM package files (URLs OK)

Install-specific Options Page

-h (or --hash) Print hash marks ("#") during install the section called “-h: Perfect for
the Impatient”

--test Perform installation tests only the section called “--test: Perform
Installation Tests Only”

--percent Print percentages during install the section called “--percent: Not
Meant for Human Consumption”

--excludedocs Do not install documentation the section called “ --excludedocs:
Do Not Install Documentation For
This Package ”

--includedocs Install documentation the section called “--includedocs:
Install Documentation For This
Package”

--replacepkgs Replace a package with a new copy
of itself

the section called “--replacepkgs:
Install the Package Even If Already
Installed”

--replacefiles Replace files owned by another
package

the section called “--replacefiles:
Install the Package Even If It Re-
places Another Package's Files”

--force Ignore package and file conflicts the section called “--force: The Big
Hammer”

--noscripts Do not execute pre- and post-install
scripts

the section called “--noscripts: Do
Not Execute Pre- and Post-install
Scripts”

--prefix <path> Relocate package to <path> if
possible

the section called “ --prefix
<path>: Relocate the package to
<path>, if possible ”

--ignorearch Do not verify package architecture the section called “ --ignorearch:
Do Not Verify Package Architec-
ture ”

--ignoreos Do not verify package operating
system

the section called “ --ignoreos: Do
Not Verify Package Operating Sys-
tem ”

--nodeps Do not check dependencies the section called “ --nodeps: Do
Not Check Dependencies Before In-
stalling Package ”

--ftpproxy <host> Use <host> as the FTP proxy the section called “ --ftpproxy
<host>: Use <host> As Proxy In
FTP-based Installs ”

--ftpport <port> Use <port> as the FTP port the section called “ --ftpport
<port>: Use <port> In FTP-
based Installs ”

General Options Page

29

-v Display additional information the section called “Getting a bit
more feedback with -v”

-vv Display debugging information the section called “Getting a lot
more information with -vv”

--root <path> Set alternate root to <path> the section called “ --root <path>:
Use <path> As An Alternate Root
”

--rcfile <rcfile> Set alternate rpmrc file to
<rcfile>

the section called “ --rcfile
<rcfile>: Use <rcfile> As
An Alternate rpmrc File ”

--dbpath <path> Use <path> to find the RPM data-
base

the section called “ --dbpath
<path>: Use <path> To Find
RPM Database ”

rpm -i — What does it do?
Of the many things RPM can do, probably the one that people think of first is the installation of
software. As mentioned earlier, installing new software is a complex, error-prone job. RPM turns
that process into a single command.

rpm -i (--install is equivalent) installs software that's been packaged into an RPM package file. It
does this by:

• Performing dependency checks.

• Checking for conflicts.

• Performing any tasks required before the install.

• Deciding what to do with config files.

• Unpacking files from the package and putting them in the proper place.

• Performing any tasks required after the install.

• Keeping track of what it did.

Let's go through each of these steps in a bit more detail.

Performing dependency checks:
Some packages will not operate properly unless some other package is installed, too. RPM makes
sure that the package being installed will have its dependency requirements met. It will also insure
that the package's installation will not cause dependency problems for other already-installed pack-
ages.

Checking for conflicts:
RPM performs a number of checks during this phase. These checks look for things like attempts to
install an already installed package, attempts to install an older package over a newer version, or the
possibility that a file may be overwritten.

Performing any tasks required before the install:
There are cases where one or more commands must be given prior to the actual installation of a
package. RPM performs these commands exactly as directed by the package builder, thus eliminat-
ing a common source of problems during installations.

Using RPM to Install Packages

30

1 Are you interested in what exactly "the right thing" means? the section called “Config file magic” has all the details.

Deciding what to do with config files:
One of the features that really sets RPM apart from other package managers, is the way it handles
configuration files. Since these files are normally changed to customize the behavior of installed
software, simply overwriting a config file would tend to make people angry — all their customiza-
tions would be gone! Instead, RPM analyzes the situation and attempts to do "the right thing" with
config files, even if they weren't originally installed by RPM! 1

Unpacking files from the package and putting them in
the proper place:

This is the step most people think of when they think about installing software. Each package file
contains a list of files that are to be installed, as well as their destination on your system. In addition,
many other file attributes, such as permissions and ownerships, are set correctly by RPM.

Performing any tasks required after the install:
Very often a new package requires that one or more commands be executed after the new files are in
place. An example of this would be running ldconfig to make new shared libraries accessible.

Keeping track of what it did:
Every time RPM installs a package on your system, it keeps track of the files it installed, in its data-
base. The database contains a wealth of information necessary for RPM to do its job. For example,
RPM uses the database when it checks for possible conflicts during an install.

Performing an Install
Let's have RPM install a package. The only thing necessary is to give the command (rpm -i) fol-
lowed by the name of the package file:

rpm -i eject-1.2-2.i386.rpm
#

At this point, all the steps outlined above have been performed. The package is now installed. Note
that the file name need not adhere to RPM's file naming convention:

mv eject-1.2-2.i386.rpm baz.txt
rpm -i baz.txt
#

In this case, we changed the name of the package file eject-1.2-2.i386.rpm to baz.txt
and then proceeded to install the package. The result is identical to the previous install, that is, the
eject-1.2-2 package successfully installed. The name of the package file, although normally in-
corporating the package label, is not used by RPM during the installation process. RPM uses the
contents of the package file, which means that even if the file was placed on a DOS floppy and the
name truncated, the installation would still proceed normally.

URLs — Another Way to Specify Package Files

Using RPM to Install Packages

31

If you've surfed the World Wide Web, you've no doubt noticed the way web pages are identified:

http://www.redhat.com/support/docs/rpm/RPM-HOWTO/RPM-HOWTO.html

This is called a Uniform Resource Locator, or URL. RPM can also use URLs, although they look a
little bit different. Here's one:

ftp://ftp.redhat.com/pub/redhat/code/rpm/rpm-2.3-1.i386.rpm

The ftp: signifies that this URL is a File Transfer Protocol URL. As the name implies, this type of
URL is used to move files around. The section containing ftp.redhat.com specifies the host-
name, or the name of the system where the package file resides.

The remainder of the URL (/pub/redhat/code/rpm/rpm-2.3-1.i386.rpm) specifies the
path to the package file, followed by the package file itself.

RPM's use of URLs gives us the ability to install a package located on the other side of the world,
with a single command:

rpm -i ftp://ftp.gnomovision.com/pub/rpms/foobar-1.0-1.i386.rpm
#

This command would use anonymous FTP to obtain the foobar version 1.0 package file and in-
stall it on your system. Of course, anonymous FTP (no username and password required) is not al-
ways available. Therefore, the URL may also contain a username and password preceding the host-
name:

ftp://smith:mypass@ftp.gnomovision.com/pub/rpms/foobar-1.0-1.i386.rpm

However, entering a password where it can be seen by anyone looking at your screen is a bad idea.
So try this format:

ftp://smith@ftp.gnomovision.com/pub/rpms/foobar-1.0-1.i386.rpm

RPM will prompt you for your password, and you'll be in business:

rpm -i ftp://smith@ftp.gnomovision.com/pub/rpms/apmd-2.4-1.i386.rpm
Password for smith@ftp.gnomovision.com: mypass (not echoed)
#

After entering a valid password, RPM installs the package.

On some systems, the FTP daemon doesn't run on the standard port 21. Normally this is done for the
sake of enhanced security. Fortunately, there is a way to specify a non-standard port in a URL:

ftp://ftp.gnomovision.com:1024/pub/rpms/foobar-1.0-1.i386.rpm

Using RPM to Install Packages

32

This URL will direct the FTP request to port 1024. The --ftpport option is another way to specify
the port. This option is discussed later, in the section called “ --ftpport <port>: Use <port> In
FTP-based Installs ”.

A warning message you might never see
Depending on circumstances, the following message might be rare or very common. While perform-
ing an ordinary install, RPM prints a warning message:

rpm -i cdp-0.33-100.i386.rpm
warning: /etc/cdp-config saved as /etc/cdp-config.rpmorig
#

What does it mean? It has to do with RPM's handling of config files. In the example above, RPM
found a file (/etc/cdp-config) that didn't belong to any RPM-installed package. Since the
cdp-0.33-100 package contains a file of the same name that is to be installed in the same direct-
ory, there is a problem.

RPM solves this the best way it can. It performs two steps:

1. It renames the original file to cdp-config.rpmorig.

2. It installs the new cdp-config file that came with the package.

Continuing our example, if we look in /etc, we see that this is exactly what has happened:

ls -al /etc/cdp*

-rw-r--r-- 1 root root 119 Jun 23 16:00 /etc/cdp-config
-rw-rw-r-- 1 root root 56 Jun 14 21:44 /etc/cdp-config.rpmorig

#

This is the best possible solution to a tricky problem. The package is installed with a config file that
is known to work. After all, the original file may be for an older, incompatible version of the soft-
ware. However, the original file is saved so that it can be studied by the system administrator, who
can decide whether the original file should be put back into service or not.

Two handy options
There are two options to rpm -i that work so well, and are so useful, you might think they should be
RPM's default behavior. They aren't, but using them only requires that you type an extra two charac-
ters:

Getting a bit more feedback with -v
Even though rpm -i is doing many things, it's not very exciting, is it? When performing installs,
RPM is pretty quiet, unless something goes wrong. However, we can ask for a bit more output by
adding -v to the command:

rpm -iv eject-1.2-2.i386.rpm
Installing eject-1.2-2.i386.rpm
#

By adding -v, RPM displayed a simple status line. Using -v is a good idea, particularly if you're go-

Using RPM to Install Packages

33

ing to use a single command to install more than one package:

rpm -iv *.rpm

Installing eject-1.2-2.i386.rpm
Installing iBCS-1.2-3.i386.rpm
Installing logrotate-1.0-1.i386.rpm

#

In this case, there were three .rpm files in the directory. By using a simple wildcard, it's as easy to
install one package as it is to install one hundred!

-h: Perfect for the Impatient
Sometimes a package can be quite large. Other than watching the disk activity light flash, there's no
assurance that RPM is working, and if it is, how far along it is. If you add -h, RPM will print fifty
hash marks ("#") as the install proceeds:

rpm -ih eject-1.2-2.i386.rpm
##
#

Once all fifty hash marks are printed, the package is completely installed. Using -v with -h results in
a very nice display, particularly when installing more than one package:

rpm -ivh *.rpm

eject ##
iBCS ##
logrotate ##

#

Additional options to rpm -i
Normally rpm -i, perhaps with the -v and -h, is all you'll need. However, there may be times when a
basic install is not going to get the job done. Fortunately, RPM has a wealth of install options to
make the tough times a little easier. As with any other powerful tool, you should understand these
options before putting them to use. Let's take a look at them:

Getting a lot more information with -vv
Sometimes it's necessary to have even more information than we can get with -v. By adding another
v, we can start to see more of RPM's inner workings:

rpm -ivv eject-1.2-2.i386.rpm

D: installing eject-1.2-2.i386.rpm
Installing eject-1.2-2.i386.rpm
D: package: eject-1.2-2 files test = 0
D: running preinstall script (if any)
D: setting file owners and groups by name (not id)
D: ///usr/bin/eject owned by root (0), group root (0) mode 755
D: ///usr/man/man1/eject.1 owned by root (0), group root (0) mode 644

Using RPM to Install Packages

34

D: running postinstall script (if any)

#

The lines starting with D: have been added by using -vv. The line ending with "files test =
0", means that RPM is actually going to install the package. If the number were non-zero, it would
mean that the --test option was present, and RPM would not actually perform the installation. For
more information on using --test with rpm -i, see the section called “--test: Perform Installation
Tests Only”.

Continuing with the above example, we see that RPM next executes a pre-install script (if there is
one), followed by the actual installation of the files in the package. There is one line for each file be-
ing installed, and that line shows the filename, ownership, group membership, and permissions (or
mode) applied to the file. With larger packages, the output from -vv can get quite lengthy! Finally,
RPM runs a post-install script, if one exists for the package. We'll be discussing pre- and post-install
scripts in more detail in the section called “--noscripts: Do Not Execute Pre- and Post-install
Scripts”.

In the vast majority of cases, it will not be necessary to use -vv. It is normally used by software en-
gineers working on RPM itself, and the output can change without notice. However, it's a handy
way to gain insights into RPM's inner workings.

--test: Perform Installation Tests Only
There are times when it's more appropriate to take it slow and not try to install a package right away.
RPM provides the --test option for that. As the names implies, it performs all the checks that RPM
normally does during an install, but stops short of actually performing the steps necessary to install
the package:

rpm -i --test eject-1.2-2.i386.rpm
#

Once again, there's not very much output. This is because the test succeeded; had there been a prob-
lem, the output would have been a bit more interesting. In this example, there are some problems:

rpm -i --test rpm-2.0.11-1.i386.rpm

/bin/rpm conflicts with file from rpm-2.3-1
/usr/bin/gendiff conflicts with file from rpm-2.3-1
/usr/bin/rpm2cpio conflicts with file from rpm-2.3-1
/usr/bin/rpmconvert conflicts with file from rpm-2.3-1
/usr/man/man8/rpm.8 conflicts with file from rpm-2.3-1
error: rpm-2.0.11-1.i386.rpm cannot be installed

#

If you'll note the version numbers, we're trying to install an older version of RPM (2.0.11) "on top
of" a newer version(2.3). RPM faithfully reported the various file conflicts and summarized with a
message saying that the install would not have proceeded, even if --test had not been on the com-
mand line.

The --test option will also catch dependency-related problems:

rpm -i --test blather-7.9-1.i386.rpm

failed dependencies:
bother >= 3.1 is needed by blather-7.9-1

Using RPM to Install Packages

35

#

Here's a tip for all you script-writers out there: RPM will return a non-zero status if the --test option
detects problems…

--replacepkgs: Install the Package Even If Already In-
stalled

The --replacepkgs option is used to force RPM to install a package that it believes to be installed
already. This option is normally used if the installed package has been damaged somehow and needs
to be fixed up.

To see how the --replacepkgs option works, let's first install some software:

rpm -iv cdp-0.33-2.i386.rpm

Installing cdp-0.33-2.i386.rpm

#

OK, now that we have cdp-0.33-2 installed, let's see what happens if we try to install the same
version "on top of" itself:

rpm -iv cdp-0.33-2.i386.rpm

Installing cdp-0.33-2.i386.rpm
package cdp-0.33-2 is already installed
error: cdp-0.33-2.i386.rpm cannot be installed

#

That didn't go very well. Let's see what adding --replacepkgs will do :

rpm -iv --replacepkgs cdp-0.33-2.i386.rpm

Installing cdp-0.33-2.i386.rpm

#

Much better. The original package was replaced by a new copy of itself.

--replacefiles: Install the Package Even If It Replaces
Another Package's Files

While the --replacepkgs option permitted a package to be installed "on top of" itself, --replacefiles
is used to allow a package to overwrite files belonging to a different package. Sounds strange? Let's
go over it in a bit more detail.

One thing that sets RPM apart from many other package managers is that it keeps track of all the
files it installs in a database. Each file's database entry contains a variety of information about the
file, including a means of summarizing the file's contents. 2 By using these summaries, known as

Using RPM to Install Packages

36

2 We'll get more into this aspect of RPM in the section called “rpm -V — What Does it Do?” when we discuss rpm -V.

MD5 checksums, RPM can determine if a particular file is going to be replaced by a file with the
same name, but different contents. Here's an example:

Package "A" installs a file (we'll call it /bin/foo.bar). Once Package A is installed, foo.bar
resides happily in the /bin directory. In the RPM database, there is an entry for /bin/foo.bar,
including the file's MD5 checksum.

However, there is a another package, "B". Package B also has a file called foo.bar that it wants to
install in /bin. There can't be two files in the same directory with the same name. The files are dif-
ferent; their MD5 checksums do not match. What happens if Package B is installed? Let's find out.
Here, we've installed a package:

rpm -iv cdp-0.33-2.i386.rpm

Installing cdp-0.33-2.i386.rpm

#

OK, no problem there. But we have another package to install. In this case, it is a new release of the
cdp package. It should be noted that RPM's detection of file conflicts does not depend on the two
packages being related. It is strictly based on the name of the file, the directory in which it resides,
and the file's MD5 checksum. Here's what happens when we try to install the package:

rpm -iv cdp-0.33-3.i386.rpm

Installing cdp-0.33-3.i386.rpm
/usr/bin/cdp conflicts with file from cdp-0.33-2
error: cdp-0.33-3.i386.rpm cannot be installed

#

What's happening? The package cdp-0.33-2 has a file, /usr/bin/cdp, that it installed. Sure
enough, there it is. Let's highlight the size and creation date of the file for future reference:

ls -al /usr/bin/cdp

-rwxr-xr-x 1 root root 34460 Feb 25 14:27 /usr/bin/cdp

#

The package we just tried to install, cdp-0.33-3 (note the different release), also installs a file
cdp in /usr/bin. Since there is a conflict, that means that the two package's cdp files must be
different — their checksums don't match. Because of this, RPM won't let the second package install.
But with --replacefiles, we can force RPM to let the /usr/bin/cdp from cdp-0.33-3 replace
the /usr/bin/cdp from cdp-0.33-2:

rpm -iv --replacefiles cdp-0.33-3.i386.rpm

Installing cdp-0.33-3.i386.rpm

#

Taking a closer look at /usr/bin/cdp, we find that they certainly are different, both in size and

Using RPM to Install Packages

37

3 You'll have to do that yourself!

creation date:

ls -al /usr/bin/cdp

-rwxr-xr-x 1 root root 34444 Apr 24 22:37 /usr/bin/cdp

#

File conflicts should be a relatively rare occurrence. They only happen when two packages attempt
to install files with the same name but different contents. There are two possible reasons for this to
happen:

• Installing a newer version of a package without erasing the older version. A newer version of a
package is a wonderful source of file conflicts against older versions — the filenames remain the
same, but the contents change. We used it in our example because it's an easy way to show what
happens when there are file conflicts. However, it is usually a bad idea when it comes to doing
this as a way to upgrade packages. RPM has a special option for this (rpm -U) that is discussed
in Chapter 4, Using RPM to Upgrade Packages.

• Installing two unrelated packages that each install a file with the same name. This may happen
because of poor package design (hence the file residing in more than one package), or a lack of
coordination between the people building the packages.

--replacefiles and Config Files

What happens if a conflicting file is a config file that you've sweated over and worked on until it's
just right? Will issuing a --replacefiles on a package with a conflicting config file blow all your
changes away?

No! RPM won't cook your goose. 3

It will save any changes you've made, to a config file called <file>.rpmsave. Let's give it a try:

As system administrator, you want to make sure your new users have a rich environment the first
time they log in. So you've come up with a really nifty .bashrc file that will be executed whenev-
er they log in. Knowing that everyone will enjoy your wonderful .bashrc file, you place it in /
etc/skel. That way, every time a new account is created, your .bashrc will be copied into the
new user's login directory.

Not realizing that the .bashrc file you modified in /etc/skel is listed as a config file in a
package called (strangely enough) etcskel, you decide to experiment with RPM using the etc-
skel package. First you try to install it:

rpm -iv etcskel-1.0-100.i386.rpm

etcskel /etc/skel/.bashrc conflicts with file from etcskel-1.0-3
error: etcskel-1.0-100.i386.rpm cannot be installed

#

Hmmm. That didn't work. Wait a minute! I can add --replacefiles to the command and it should in-
stall just fine:

rpm -iv --replacefiles etcskel-1.0-100.i386.rpm

Using RPM to Install Packages

38

Installing etcskel-1.0-100.i386.rpm
warning: /etc/skel/.bashrc saved as /etc/skel/.bashrc.rpmsave

#

Wait a minute… That's my customized .bashrc! Was it really saved?

ls -al /etc/skel/

total 8
-rwxr-xr-x 1 root root 186 Oct 12 1994 .Xclients
-rw-r--r-- 1 root root 1126 Aug 23 1995 .Xdefaults
-rw-r--r-- 1 root root 24 Jul 13 1994 .bash_logout
-rw-r--r-- 1 root root 220 Aug 23 1995 .bash_profile
-rw-r--r-- 1 root root 169 Jun 17 20:02 .bashrc
-rw-r--r-- 1 root root 159 Jun 17 20:46 .bashrc.rpmsave
drwxr-xr-x 2 root root 1024 May 13 13:18 .xfm
lrwxrwxrwx 1 root root 9 Jun 17 20:46 .xsession -> .Xclients

cat /etc/skel/.bashrc.rpmsave

.bashrc
User specific aliases and functions
Modified by the sysadmin
uptime
Source global definitions
if [-f /etc/bashrc]; then

. /etc/bashrc
fi

#

Whew! You heave a sigh of relief, and study the new .bashrc to see if the changes need to be in-
tegrated into your customized version.

--replacefiles Can Mean Trouble Down the Road

While --replacefiles can make today's difficult install go away, it can mean big headaches in the fu-
ture. When the time comes for erasing the packages involved in a file conflict, bad things can hap-
pen.

What bad things? Well, files can be deleted. Here's how, in three easy steps:

1. Two packages are installed. When the second package is installed, there is a conflict with a file
installed by the first package. Therefore, the --replacefiles option is used to force RPM to re-
place the conflicting file with the one from the second package.

2. At some point in the future, the second package is erased.

3. The conflicting file is gone!

Let's look at an example. First, we install a new package. Next, we take a look at a file it installed,
noting the size and creation date.

rpm -iv cdp-0.33-2.i386.rpm

Installing cdp-0.33-2.i386.rpm

ls -al /usr/bin/cdp

Using RPM to Install Packages

39

4 For more information on erasing packages with rpm -e, see Chapter 3, Using RPM to Erase Packages.

-rwxr-xr-x 1 root root 34460 Feb 25 14:27 /usr/bin/cdp

#

Next, we try to install a newer release of the same package. It fails:

rpm -iv cdp-0.33-3.i386.rpm

Installing cdp-0.33-3.i386.rpm
/usr/bin/cdp conflicts with file from cdp-0.33-2
error: cdp-0.33-3.i386.rpm cannot be installed

#

So, we use --replacefiles to convince the newer package to install. We note that the newer package
installed a file on top of the file originally installed:

rpm -iv --replacefiles cdp-0.33-3.i386.rpm

Installing cdp-0.33-3.i386.rpm

ls -al /usr/bin/cdp

-rwxr-xr-x 1 root root 34444 Apr 24 22:37 /usr/bin/cdp

#

The original cdp file, 34,460 bytes long, and dated February 25th, has been replaced with a file
with the same name, but 34,444 bytes long from the 24th of April. The original file is long gone.

Next, we erased the package we just installed. 4 Finally, we tried to find the file:

rpm -e cdp-0.33-3
ls -al /usr/bin/cdp

ls: /usr/bin/cdp: No such file or directory

#

The file is gone. Why is this? The reason is that /usr/bin/cdp from the first package was re-
placed when the second package was installed using the --replacefiles option. Then, when the
second package was erased, the /usr/bin/cdp file was removed, since it belonged to the second
package. If the first package had been erased first, there would have been no problem, since RPM
would have realized that the first package's file had already been deleted, and would have left the
file in place.

The only problem with this state of affairs is that the first package is still installed, except for /
usr/bin/cdp. So now there's a partially installed package on the system. What to do? Perhaps it's
time to exercise your new-found knowledge by issuing an rpm -i --replacepkgs command to fix up
the first package…

--nodeps: Do Not Check Dependencies Before In-
stalling Package

Using RPM to Install Packages

40

5 No pun intended.

One day it'll happen. You'll be installing a new package, when suddenly, the install bombs:

rpm -i blather-7.9-1.i386.rpm

failed dependencies:
bother >= 3.1 is needed by blather-7.9-1

#

What happened? The problem is that the package you're installing requires another package to be in-
stalled in order for it to work properly. In our example, the blather package won't work properly
unless the bother package (and more specifically, bother version 3.1 or later) is installed. Since
our system doesn't have an appropriate version of bother installed at all, RPM aborted the install-
ation of blather.

Now, 99 times out of 100, this exactly the right thing for RPM to do. After all, if the package doesn't
have everything it needs to work properly, why try to install it? Well, as with everything else in life,
there are exceptions to the rule. And that is why there is a --nodeps option.

Adding the --nodeps options to an install command directs RPM to ignore any dependency-related
problems and to complete the package installation. Going back to our example above, let's add the -
-nodeps option to the command line and see what happens:

rpm -i --nodeps blather-7.9-1.i386.rpm
#

The package was installed without a peep. Whether it will work properly is another matter, but it is
installed. In general, it's not a good idea to use --nodeps to get around dependency problems. The
package builders included the dependency requirements for a reason, and it's best not to second-
guess them.

--force: The Big Hammer
Adding --force to an install command is a way of saying "Install it anyway!" In essence, it adds -
-replacepkgs and --replacefiles to the command. Like a big hammer, --force is an irresistible force
5 that makes things happen. In fact, the only thing that will prevent a --force'ed install from proceed-
ing is a dependency conflict.

And like a big hammer, it pays to fully understand why you need to use --force before actually us-
ing it.

--excludedocs: Do Not Install Documentation For This
Package

RPM has a number of good features. One of them is the fact that RPM classifies the files it installs
into one of three categories:

1. Config files.

2. Files containing documentation.

3. All other files.

Using RPM to Install Packages

41

6 For more information on rpmrc files, refer to Appendix B, The rpmrc File.

RPM uses the --excludedocs option to prevent files classified as documentation from being in-
stalled. In the following example, we know that the package contains documentation: specifically,
the man page, /usr/man/man1/cdp.1. Let's see how --excludedocs keeps it from being in-
stalled:

rpm -iv --excludedocs cdp-0.33-3.i386.rpm

Installing cdp-0.33-3.i386.rpm

ls -al /usr/man/man1/cdp.1

ls: /usr/man/man1/cdp.1: No such file or directory

#

The primary reason to use --excludedocs is to save on disk space. The savings can be sizeable. For
example, on an RPM-installed Linux system, there can be over 5,000 documentation files, using
nearly 50 megabytes.

If you like, you can make --excludedocs the default for all installs. To do this, simply add the fol-
lowing line to /etc/rpmrc, .rpmrc in your login directory, or the file specified with the --rcfile
(which is discussed in the section called “ --rcfile <rcfile>: Use <rcfile> As An Alternate
rpmrc File ”) option:

excludedocs: 1

After that, every time an rpm -i command is run, it will not install any documentation files. 6

--includedocs: Install Documentation For This Pack-
age

As the name implies, --includedocs directs RPM to install any files marked as being documentation.
This option is normally not required, unless the rpmrc file entry "excludedocs: 1" is included in the
referenced rpmrc file. Here's an example. Note that in this example, /etc/rpmrc contains "ex-
cludedocs: 1", which directs RPM not to install documentation files:

ls /usr/man/man1/cdp.1

ls: /usr/man/man1/cdp.1: No such file or directory

rpm -iv cdp-0.33-3.i386.rpm

Installing cdp-0.33-3.i386.rpm

ls /usr/man/man1/cdp.1

ls: /usr/man/man1/cdp.1: No such file or directory

#

Here we've checked to make sure that the cdp man page did not previously exist on the system.
Then after installing the cdp package, we find that the "excludedocs: 1" in /etc/rpmrc did its
job: the man page wasn't installed. Let's try it again, this time adding the --includedocs option:

ls /usr/man/man1/cdp.1

Using RPM to Install Packages

42

7 We discuss RPM's query commands in Chapter 5, Getting Information About Packages.

ls: /usr/man/man1/cdp.1: No such file or directory

rpm -iv --includedocs cdp-0.33-3.i386.rpm

Installing cdp-0.33-3.i386.rpm

ls /usr/man/man1/cdp.1

-rw-r--r-- 1 root root 4550 Apr 24 22:37 /usr/man/man1/cdp.1

#

The --includedocs option overrode the rpmrc file's "excludedocs: 1" entry, causing RPM to install
the documentation file.

--prefix <path>: Relocate the package to <path>, if
possible

Some packages give the person installing them flexibility in determining where on their system they
should be installed. These are known as relocatable packages. A relocatable package differs from a
package that cannot be relocated, in only one way — the definition of a default prefix. Because of
this, it takes a bit of additional effort to determine if a package is relocatable. But here's an RPM
command that can be used to find out: 7

rpm -qp --queryformat "%{defaultprefix}\n" <packagefile>

Just replace <packagefile> with the name of the package file you want to check out. If the
package is not relocatable, you'll only see the word (none). If, on the other hand, the command
displays a path, that means the package is relocatable. Unless specified otherwise, every file in the
package will be installed somewhere below the path specified by the default prefix.

What if you want to specify otherwise? Easy: just use the --prefix option. Let's give it a try:

rpm -qp --queryformat "%{defaultprefix}\n" cdplayer-1.0-1.i386.rpm

/usr/local

rpm -i --prefix /tmp/test cdplayer-1.0-1.i386.rpm
#

Here we've used our magic query command to determine that the cdplayer package is relocat-
able. It normally installs below /usr/local, but we wanted to move it around. By adding the -
-prefix option, we were able to make the package install in /tmp/test. If we take a look there,
we'll see that RPM created all the necessary directories to hold the package's files:

ls -lR /tmp/test/

total 2
drwxr-xr-x 2 root root 1024 Dec 16 13:21 bin/
drwxr-xr-x 3 root root 1024 Dec 16 13:21 man/

/tmp/test/bin:
total 41
-rwxr-xr-x 1 root root 40739 Oct 14 20:25 cdp*
lrwxrwxrwx 1 root root 17 Dec 16 13:21 cdplay -> /tmp/test/bin/cdp*

Using RPM to Install Packages

43

8 It's possible to use RPM's query command to see if a package has pre- or post-install scripts. See the section called “ --scripts — Show
Scripts Associated With a Package ” for more information.

/tmp/test/man:
total 1
drwxr-xr-x 2 root root 1024 Dec 16 13:21 man1/

/tmp/test/man/man1:
total 5
-rwxr-xr-x 1 root root 4550 Oct 14 20:25 cdp.1*

#

--noscripts: Do Not Execute Pre- and Post-install
Scripts

Before we talk about the --noscripts option, we need to cover a bit of background. In the section
called “Getting a lot more information with -vv”, we saw some output from an install using the -vv
option. As can be seen, there are two lines that mention pre-install and post-install scripts. When
some packages are installed, they may require that certain programs be executed before, after, or be-
fore and after the package's files are copied to disk. 8

The --noscripts option prevents these scripts from being executed during an install. This is a very
dangerous thing to do! The --noscripts option is really meant for package builders to use during the
development of their packages. By preventing the pre- and post-install scripts from running, a pack-
age builder can keep a buggy package from bringing down their development system. Once the bugs
are found and eliminated, the --noscripts option is no longer necessary.

--percent: Not Meant for Human Consumption
An option that will probably never be very popular is --percent. This option is meant to be used by
programs that interact with the user, perhaps presenting a graphical user interface for RPM. When
the --percent option is used, RPM displays a series of numbers. Each number is a percentage that
indicates how far along the install is. When the number reaches 100%, the installation is complete.

rpm -i --percent iBCS-1.2-3.i386.rpm

%f iBCS:1.2:3
%% 0.002140
%% 1.492386
%% 5.296632
%% 9.310026
%% 15.271010
%% 26.217846
%% 31.216000
%% 100.000000
%% 100.000000

#

The list of percentages will vary depending on the number of files in the package, but every package
ends at 100% when completely installed.

--rcfile <rcfile>: Use <rcfile> As An Alternate rpm-
rc File

The --rcfile option is used to specify a file containing default settings for RPM. Normally, this op-
tion is not needed. By default, RPM uses /etc/rpmrc and a file named .rpmrc located in your

Using RPM to Install Packages

44

9 For more information on rpmrc file entries, see Appendix B, The rpmrc File.
10 The use of rpmrc files is described in Appendix B, The rpmrc File.
11 The use of rpmrc files is described in Appendix B, The rpmrc File.

login directory.

This option would be used if there was a need to switch between several sets of RPM defaults. Soft-
ware developers and package builders will normally be the only people using the --rcfile option. For
more information on rpmrc files, see Appendix B, The rpmrc File.

--root <path>: Use <path> As An Alternate Root
Adding --root <path> to an install command forces RPM to assume that the directory specified by
<path> is actually the "root" directory. The --root option affects every aspect of the install pro-
cess, so pre- and post-install scripts are run with <path> as their root directory (using ch-
root(2), if you must know). In addition, RPM expects its database to reside in the directory spe-
cified by the dbpath rpmrc file entry, relative to <path>. 9

Normally this option is only used during an initial system install, or when a system has been booted
off a "rescue disk" and some packages need to be re-installed.

--dbpath <path>: Use <path> To Find RPM Database
In order for RPM to do its handiwork, it needs access to an RPM database. Normally, this database
exists in the directory specified by the rpmrc file entry, dbpath. By default, dbpath is set to /
var/lib/rpm.

Although the dbpath entry can be modified in the appropriate rpmrc file, the --dbpath option is
probably a better choice when the database path needs to be changed temporarily. An example of a
time the --dbpath option would come in handy is when it's necessary to examine an RPM database
copied from another system. Granted, it's not a common occurrence, but it's difficult to handle any
other way.

--ftpport <port>: Use <port> In FTP-based Installs
Back in the section called “URLs — Another Way to Specify Package Files” we showed how RPM
can access package files by the use of a URL. We also mentioned that some systems may not use the
standard FTP port. In those cases, it's necessary to give RPM the proper port number to use. As we
mentioned above, one approach is to embed the port number in the URL itself.

Another approach is to use the --ftpport option. RPM will access the desired port when this option,
along with the port number, is added to the command line. In cases where the desired port seldom
changes, it may be entered in an rpmrc file by using the ftpport entry. 10

--ftpproxy <host>: Use <host> As Proxy In FTP-based
Installs

Many companies and Internet Service Providers (ISPs) employ various methods to protect their net-
work connections against misuse. One of these methods is to use a system that will process all FTP
requests on behalf of the other systems on the company or ISP network. By having a single com-
puter act as a proxy for the other systems, it serves to protect the other systems against any FTP-
related misuse.

When RPM is employed on a network with an FTP proxy system, it will be necessary for RPM to
direct all its FTP requests to the FTP proxy. RPM will send its FTP requests to the specified proxy
system when the --ftpproxy option, along with the proxy hostname, is added to the command line.

In cases where the proxy host seldom changes, it may be entered in an rpmrc file by using the ftp-
proxy entry. 11

Using RPM to Install Packages

45

12 If you are porting RPM, you'll find more on arch_compat in the section called “ xxx_compat — Define Compatible Architectures ”.
13 If you are porting RPM, you'll find more on os_compat in the section called “ xxx_compat — Define Compatible Architectures ”.

--ignorearch: Do Not Verify Package Architecture
When a package file is created, RPM specifies the architecture, or type of computer hardware, for
which the package was created. This is a good thing, as the architecture is one of the main factors in
determining whether a package written for one computer is going to be compatible with another
computer.

When a package is installed, RPM uses the arch_compat rpmrc entries in order to determine what
are normally considered compatible architectures. Unless you're porting RPM to a new architecture,
you shouldn't make any changes to these entries. 12 While RPM attempts to make the right decisions
regarding package compatibility, there are times when it errs on the side of conservatism. In those
cases, it's necessary to override RPM's decision. The --ignorearch option is used in those cases.
When added to the command line, RPM will not perform any architecture-related checking.

Unless you really know what you're doing, you should never use --ignorearch!

--ignoreos: Do Not Verify Package Operating System
When a package file is created, RPM specifies the operating system for which the package was cre-
ated. This is a good thing as the operating system is one of the main factors in determining whether
a package written for one computer is going to be compatible with another computer.

When a package is installed, RPM uses the os_compat rpmrc entries to determine what are nor-
mally considered compatible operating systems. Unless you're porting RPM to a new operating sys-
tem, you shouldn't make any changes to these entries. 13 While RPM attempts to make the right de-
cisions regarding package compatibility, there are times when it errs on the side of conservatism. In
those cases, it's necessary to override RPM's decision. The --ignoreos option is used in those cases.
When added to the command line, RPM will not perform any operating system-related checking.

Unless you really know what you're doing, you should never use --ignoreos!

Using RPM to Install Packages

46

Chapter 3. Using RPM to Erase
Packages

Table 3.1. rpm -e Command Syntax

rpm -e (or --erase) options pkg1 … pkgN

Parameters

pkg1 … pkgN One or more installed packages

Erase-specific Options Page

--test Perform erase tests only the section called “ --test — Go
Through the Process of Erasing the
Package, But Do Not Erase It ”

--noscripts Do not execute pre- and post-
uninstall scripts

the section called “ --noscripts —
Do Not Execute Pre- and Post-
uninstall Scripts ”

--nodeps Do not check dependencies the section called “ --nodeps: Do
Not Check Dependencies Before
Erasing Package ”

General Options Page

-vv Display debugging information the section called “Getting More In-
formation With -vv”

--root <path> Set alternate root to <path> the section called “ --root <path>
— Use <path> As the Root ”

--rcfile <rcfile> Set alternate rpmrc file to
<rcfile>

the section called “ --rcfile
<rcfile> — Read <rcfile>
For RPM Defaults ”

--dbpath <path> Use <path> to find the RPM data-
base

the section called “ --dbpath
<path>: Use <path> To Find
RPM Database ”

rpm -e — What Does it Do?
The rpm -e command (--erase is equivalent) removes, or erases, one or more packages from the
system. RPM performs a series of steps whenever it erases a package:

• It checks the RPM database to make sure that no other packages depend on the package being
erased.

• It executes a pre-uninstall script (if one exists).

• It checks to see if any of the package's config files have been modified. If so, it saves copies of
them.

• It reviews the RPM database to find every file listed as being part of the package, and if they do
not belong to another package, deletes them.

• It executes a post-uninstall script (if one exists).

• It removes all traces of the package (and the files belonging to it) from the RPM database.

47

That's quite a bit of activity for a single command. No wonder RPM can be such a time-saver!

Erasing a Package
The most basic erase command is:

rpm -e eject
#

In this case, the eject package was erased. There isn't much in the way of feedback, is there?
Could we get more if we add -v?

rpm -ev eject
#

Still nothing. However, there's another option that can be counted on to give a wealth of informa-
tion. Let's give it a try:

Getting More Information With -vv
By adding -vv to the command line, we can often get a better feel for what's going on inside RPM.
The -vv option was really meant for the RPM developers, and its output may change, but it is a great
way to gain insight into RPM's inner workings. Let's try it with rpm -e:

rpm -evv eject

D: uninstalling record number 286040
D: running preuninstall script (if any)
D: removing files test = 0
D: /usr/man/man1/eject.1 - removing
D: /usr/bin/eject - removing
D: running postuninstall script (if any)
D: removing database entry
D: removing name index
D: removing group index
D: removing file index for /usr/bin/eject
D: removing file index for /usr/man/man1/eject.1

#

Although -v had no effect on RPM's output, -vv gave us a torrent of output. But what does it tell us?

First, RPM displays the package's record number. The number is normally of use only to people that
work on RPM's database code.

Next, RPM executes a "pre-uninstall" script, if one exists. This script can execute any commands re-
quired to remove the package before any files are actually deleted.

The "files test = 0" line indicates that RPM is to actually erase the package. If the number
had been non-zero, RPM would only be performing a test of the package erasure. This happens
when the --test option is used. Refer to the section called “ --test — Go Through the Process of
Erasing the Package, But Do Not Erase It ” for more information on the use of the --test option with
rpm -e.

The next two lines log the actual removal of the files comprising the package. Packages with many
files can result in a lot of output when using -vv!

Using RPM to Erase Packages

48

Next, RPM executes a "post-uninstall" script, if one exists. Like the pre-uninstall script, this script is
used to perform any processing required to cleanly erase the package. Unlike the pre-uninstall script,
however, the post-uninstall script runs after all the package's files have been removed.

Finally, the last five lines show the process RPM uses to remove every trace of the package from its
database. From the messages, we can see that the database contains some per-package data, fol-
lowed by information on every file installed by the package.

Additional Options
If you're interested in a complex command with lots of options, rpm -e is not the place to look.
There just aren't that many different ways to erase a package! But there are a few options you should
know about.

--test — Go Through the Process of Erasing the Pack-
age, But Do Not Erase It

If you're a bit gun-shy about erasing a package, you can use the --test option first to see what rpm -e
would do:

rpm -e --test bother

removing these packages would break dependencies:
bother >= 3.1 is needed by blather-7.9-1

#

It's pretty easy to see that the blather package wouldn't work very well if bother were erased.
To be fair, however, RPM wouldn't have erased the package in this example unless we used the -
-nodeps option, which we'll discuss shortly.

However, if there are no problems erasing the package, you won't see very much:

rpm -e --test eject
#

We know, based on previous experience, that -v doesn't give us any additional output with rpm -e.
However, we do know that -vv works wonders. Let's see what it has to say:

rpm -evv --test eject

D: uninstalling record number 286040
D: running preuninstall script (if any)
D: would remove files test = 1
D: /usr/man/man1/eject.1 - would remove
D: /usr/bin/eject - would remove
D: running postuninstall script (if any)
D: would remove database entry

#

As you can see, the output is similar to that of a regular erase command using the -vv option, with
the following exceptions:

Using RPM to Erase Packages

49

• The "would remove files test = 1" line ends with a non-zero number. This is be-
cause --test has been added. If the command hadn't included --test, the number would have been
0, and the package would have been erased.

• There is a line for each file that RPM would have removed, each one ending with "would re-
move" instead of "removing".

• There is only one line at the end, stating: "would remove database entry", versus the
multi-line output showing the cleanup of the RPM database during an actual erase.

By using --test in conjunction with -vv, it's easy to see exactly what RPM would do during an actual
erase.

--nodeps: Do Not Check Dependencies Before Erasing
Package

It's likely that one day while erasing a package, you'll see something like this:

rpm -e bother

removing these packages would break dependencies:
bother >= 3.1 is needed by blather-7.9-1

#

What happened? The problem is that one or more of the packages installed on your system require
the package you're trying to erase. Without it, they won't work properly. In our example, the
blather package won't work properly unless the bother package (and more specifically,
bother version 3.1 or later) is installed. Since we're trying to erase bother, RPM aborted the
erasure.

Now, 99 times out of 100, this is exactly the right thing for RPM to do. After all, if the package is
needed by other packages, why try to erase it? As with everything else in life, there are exceptions to
the rule. And that is why there is a --nodeps option.

Adding the --nodeps options to an erase command directs RPM to ignore any dependency-related
problems, and to erase the package. Going back to our example above, let's add the --nodeps option
to the command line and see what happens:

rpm -e --nodeps bother
#

The package was erased without a peep. Whether the blather package will work properly is an-
other matter. In general, it's not a good idea to use --nodeps to get around dependency problems.
The package builders included the dependency requirements for a reason, and it's best not to second-
guess them.

--noscripts — Do Not Execute Pre- and Post-uninstall
Scripts

In the section called “Getting More Information With -vv”, we used the -vv option to see what RPM
was actually doing when it erased a package. We noted that there were two scripts, a pre-uninstall
and a post-uninstall, that were used to execute commands required during the process of erasing a
package.

Using RPM to Erase Packages

50

1 For more information on rpmrc file entries, see Appendix B, The rpmrc File.

The --noscripts option prevents these scripts from being executed during an erase. This is a very
dangerous thing to do! The --noscripts option is really meant for package builders to use during the
development of their packages. By preventing the pre- and post-uninstall scripts from running, a
package builder can keep a buggy package from bringing down their development system. Once the
bugs are found and eliminated, there's very little need to prevent these scripts from running; in fact,
doing so can cause problems!

--rcfile <rcfile> — Read <rcfile> For RPM Defaults
The --rcfile option is used to specify a file containing default settings for RPM. Normally, this op-
tion is not needed. By default, RPM uses /etc/rpmrc and a file named .rpmrc located in your
login directory.

This option would be used if there was a need to switch between several sets of RPM defaults. Soft-
ware developers and package builders will normally be the only people using the --rcfile option. For
more information on rpmrc files, see Appendix B, The rpmrc File.

--root <path> — Use <path> As the Root
Adding --root <path> to an install command forces RPM to assume that the directory specified by
<path> is actually the "root" directory. The --root option affects every aspect of the install pro-
cess, so pre- and post-install scripts are run with <path> as their root directory (using ch-
root(2), if you must know). In addition, RPM expects its database to reside in the directory spe-
cified by the dbpath rpmrc file entry, relative to <path>. 1

Normally this option is only used during an initial system install, or when a system has been booted
off a "rescue disk" and some packages need to be re-installed.

--dbpath <path>: Use <path> To Find RPM Database
In order for RPM to do its handiwork, it needs access to an RPM database. Normally, this database
exists in the directory specified by the rpmrc file entry, dbpath. By default, dbpath is set to /
var/lib/rpm.

Although the dbpath entry can be modified in the appropriate rpmrc file, the --dbpath option is
probably a better choice when the database path needs to be changed temporarily. An example of a
time the --dbpath option would come in handy is when it's necessary to examine an RPM database
copied from another system. Granted, it's not a common occurrence, but it's difficult to handle any
other way.

rpm -e and Config files
If you've made changes to a configuration file that was originally installed by RPM, your changes
won't be lost if you erase the package. Say, for example, that we've made changes to /
etc/skel/.bashrc (a config file), which was installed as part of the etcskel package. Later,
we remove etcskel:

rpm -e etcskel
#

But if we take a look in /etc/skel, look what's there:

ls -al

Using RPM to Erase Packages

51

2 See Chapter 5, Getting Information About Packages for more information on rpm -q.

total 5
drwxr-xr-x 3 root root 1024 Jun 17 22:01 .
drwxr-xr-x 8 root root 2048 Jun 17 19:01 ..
-rw-r--r-- 1 root root 152 Jun 17 21:54 .bashrc.rpmsave
drwxr-xr-x 2 root root 1024 May 13 13:18 .xfm

#

Sure enough: .bashrc.rpmsave is a copy of your modified .bashrc file! Remember,
however, that this feature only works with config files. Not sure how to determine which files RPM
thinks are config files? Chapter 5, Getting Information About Packages will show you how.

Watch Out!
RPM takes most of the work out of removing software from your system, and that's great. As with
everything else in life, however, there's a downside. RPM also makes it easy to erase packages that
are critical to your system's continued operation. Here are some examples of packages not to erase:

• RPM: RPM will happily uninstall itself. No problem — you'll just re-install it with rpm -i…
Oops!

• Bash: The Bourne-again Shell may not be the shell you use, but certain parts of many Linux sys-
tems (like the scripts executed during system startup and shutdown) use /bin/sh, which is a
symbolic link to /bin/bash. No /bin/bash, no /bin/sh. No /bin/sh, no system!

In many cases, RPM's dependency processing will prevent inadvertent erasures from causing
massive problems. However, if you're not sure, use rpm -q to get more information about the pack-
age you'd like to erase. 2

Using RPM to Erase Packages

52

Chapter 4. Using RPM to Upgrade
Packages

Table 4.1. rpm -U Command Syntax

rpm -U (or --upgrade)options file1.rpm … fileN.rpm

Parameters

file1.rpm … fileN.rpm One or more RPM package files (URLs OK)

Upgrade-specific Options Page

-h (or --hash) Print hash marks ("#") during up-
gradea

the section called “-h: Perfect for
the Impatient”

--oldpackage Permit "upgrading" to an older
package

the section called “ --oldpackage:
Upgrade To An Older Version ”

--test Perform upgrade tests onlya the section called “--test: Perform
Installation Tests Only”

--excludedocs Do not install documentationa the section called “ --excludedocs:
Do Not Install Documentation For
This Package ”

--includedocs Install documentationa the section called “--includedocs:
Install Documentation For This
Package”

--replacepkgs Replace a package with a new copy
of itselfa

the section called “--replacepkgs:
Install the Package Even If Already
Installed”

--replacefiles Replace files owned by another
packagea

the section called “--replacefiles:
Install the Package Even If It Re-
places Another Package's Files”

--force Ignore package and file conflicts the section called “--force: The Big
Hammer”

--percent Print percentages during upgradea the section called “--percent: Not
Meant for Human Consumption”

--noscripts Do not execute pre- and post-install
scripts

the section called “ --noscripts: Do
Not Execute Install and Uninstall
Scripts ”

--prefix <path> Relocate package to <path> if
possiblea

the section called “ --prefix
<path>: Relocate the package to
<path>, if possible ”

--ignorearch Do not verify package architecturea the section called “ --ignorearch:
Do Not Verify Package Architec-
ture ”

--ignoreos Do not verify package operating
systema

the section called “ --ignoreos: Do
Not Verify Package Operating Sys-
tem ”

--nodeps Do not check dependenciesa the section called “ --nodeps: Do
Not Check Dependencies Before In-
stalling Package ”

--ftpproxy <host> Use <host> as the FTP proxya the section called “ --ftpproxy
<host>: Use <host> As Proxy In
FTP-based Installs ”

--ftpport <port> Use <port> as the FTP porta the section called “ --ftpport
<port>: Use <port> In FTP-

53

based Installs ”

General Options Page

-v Display additional informationa the section called “Getting a bit
more feedback with -v”

-vv Display debugging informationa the section called “Getting a lot
more information with -vv”

--root <path> Set alternate root to <path>a the section called “ --root <path>:
Use <path> As An Alternate Root
”

--rcfile <rcfile> Set alternate rpmrc file to
<rcfile>a

the section called “ --rcfile
<rcfile>: Use <rcfile> As
An Alternate rpmrc File ”

--dbpath <path> Use <path> to find the RPM data-
base a

the section called “ --dbpath
<path>: Use <path> To Find
RPM Database ”

a This option behaves identically to the same option used with rpm -i. Please see Chapter 2, Using RPM to Install Packages
for more information on this option.

rpm -U — What Does it Do?
If there was one RPM command that could win over friends, it would be RPM's upgrade command.
After all, anyone who has ever tried to install a newer version of any software knows what a trau-
matic experience it can be. With RPM, though, this process is reduced to a single command: rpm -
U. The rpm -U command (--upgrade is equivalent) performs two distinct operations:

1. Installs the desired package.

2. Erases all older versions of the package, if any exist.

If it sounds to you like rpm -U is nothing more than an rpm -i command (see Chapter 2, Using
RPM to Install Packages) followed by the appropriate number of rpm -e commands, (see Chapter 3,
Using RPM to Erase Packages) you'd be exactly right. In fact, we'll be referring back to those
chapters as we discuss rpm -U, so if you haven't skimmed those chapters yet, you might want to do
that now.

While some people might think it's a "cheap shot" to claim that RPM performs an upgrade when in
fact it's just doing the equivalent of a couple of other commands, in fact, it's a very smart thing to
do. By carefully crafting RPM's package installation and erasure commands to do the work required
during an upgrade, it makes RPM more tolerant of misuse by preserving important files even if an
upgrade isn't being done.

If RPM had been written with a very "smart" upgrade command, and the install and erase com-
mands couldn't handle upgrade situations at all, installing a package could overwrite a modified con-
figuration file. Likewise, erasing a package would also mean that config files could be erased. Not a
good situation! However, RPM's approach to upgrades makes it possible to handle even the most
tricky situation — having multiple versions of a package install simultaneously.

Config file magic
While the rpm -i and rpm -e commands each do their part to keep config files straight, it is with
rpm -U that the full power of RPM's config file handling shows through. There are no less than six
different scenarios that RPM takes into account when handling config files.

In order to make the appropriate decisions, RPM needs information. The information used to decide
how to handle config files is a set of three large numbers known as MD5 checksums. An MD5
checksum is produced when a file is used as the input to a complex series of mathematical opera-
tions. The resulting checksum has a unique property, in that any change to the file's contents will

Using RPM to Upgrade Packages

54

1 Actually, there's a one in 2128 chance a change will go undetected, but for all practical purposes, it's as close to perfect as we can get.
2 Or, as some sticklers for detail may note, it may have been modified, and subsequently those modifications were undone.

result in a change to the checksum of that file. 1 Therefore, MD5 checksums are a powerful tool for
quickly determining whether two different files have the same contents or not.

In the previous paragraph, we stated that RPM uses three different MD5 checksums to determine
what should be done with a config file. The three checksums are:

1. The MD5 checksum of the file when it was originally installed. We'll call this the original file.

2. The MD5 checksum of the file as it exists at upgrade time. We'll call this the current file.

3. The MD5 checksum of the corresponding file in the new package. We'll call this the new file.

Let's take a look at the various combinations of checksums, see what RPM will do because of them,
and discuss why. In the following examples, we'll use the letters X, Y, and Z in place of lengthy
MD5 checksums.

Original file = X, Current file = X, New file = X

In this case, the file originally installed was never modified. 2 The file in the new version of the
package is identical to the file on disk.

In this case, RPM installs the new file, overwriting the original. You may be wondering why go to
the trouble of installing the new file if it's just the same as the existing one. The reason is that as-
pects of the file other than its name and contents might have changed. The file's ownership, for ex-
ample, might be different in the new version.

Original file = X, Current file = X, New file = Y

The original file has not been modified, but the file in the new package is different. Perhaps the dif-
ference represents a bug-fix, or a new feature. It makes no difference to RPM.

In this case, RPM installs the new file, overwriting the original. This makes sense. If it didn't, RPM
would never permit newer, modified versions of software to be installed! The original file is not
saved, since it had not been changed. A lack of changes here means that no site-specific modifica-
tions were made to the file.

Original file = X, Current file = Y, New file = X

Here we have a file that was changed at some point. However, the new file is identical to the exist-
ing file prior to the local modifications.

In this case, RPM takes the viewpoint that since the original file and the new file are identical, the
modifications made to the original version must still be valid for the new version. It leaves the exist-
ing, modified file in place.

Original file = X, Current file = Y, New file = Y

At some point the original file was modified, and those modifications happen to make the file
identical to the new file. Perhaps the modification was made to fix a security problem, and the new
version of the file has the same fix applied to it.

In this case, RPM installs the new version, overwriting the modified original. The same philosophy
used in the first scenario applies here — although the file has not changed, perhaps some other as-
pect of the file has, so the new version is installed.

Original file = X, Current file = Y, New file = Z

Here the original file was modified at some point. The new file is different from both the original

Using RPM to Upgrade Packages

55

3 For more information on RPM's use of URLs, please see the section called “URLs — Another Way to Specify Package Files”.

and the modified versions of the original file.

RPM is not able to analyze the contents of the files, and determine what is going on. In this instance,
it takes the best possible approach. The new file is known to work properly with the rest of the soft-
ware in the new package — at least the people building the new package should have insured that it
does. The modified original file is an unknown: it might work with the new package, it might not.
So RPM installs the new file.

BUT… The existing file was definitely modified. Someone made an effort to change the file, for
some reason. Perhaps the information contained in the file is still of use. Therefore, RPM saves the
modified file, naming it <file>.rpmsave, and prints a warning, so the user knows what
happened:

warning: /etc/skel/.bashrc saved as /etc/skel/.bashrc.rpmsave

These five scenarios cover just about every possible circumstance, save one. The missing scenario?

Original file = none, Current file = ??, New file = ??

While RPM doesn't use checksums in this particular case, we'll describe it in those terms, for the
sake of consistency. In this instance, RPM had not installed the file originally, so there is no original
checksum.

Because the file had not originally been installed as part of a package, there is no way for RPM to
determine if the file currently in place had been modified. Therefore, the checksums for the current
file and the new file are irrelevant; they cannot be used to clear up the mystery.

When this happens, RPM renames the file to <file>.rpmorig, prints a warning, and installs the
new file. This way, any modifications contained in the original file are saved. The system adminis-
trator can review the differences between the original and the newly installed files and determine
what action should be taken.

As you can see, in the majority of cases RPM will automatically take the proper course of action
when performing an upgrade. It is only when config files have been modified and are to be overwrit-
ten, that RPM leaves any post-upgrade work for the system administrator. Even in those cases,
many times the modified files are not worth saving and can be deleted.

Upgrading a Package
The most basic version of the rpm -U command is simply "rpm -U", followed by the name of a
.rpm package file:

rpm -U eject-1.2-2.i386.rpm
#

Here, RPM performed all the steps necessary to upgrade the eject-1.2-2 package, faster than
could have been done by hand. As in RPM's install command, Uniform Resource Locators, or
URLs, can also be used to specify the package file. 3

rpm -U's Dirty Little Secret
Well, in the example above, we didn't tell the whole story. There was no older version of the eject
package installed. Yes, it's true — rpm -U works just fine as a replacement for the normal install
command rpm -i.

Using RPM to Upgrade Packages

56

This is another, more concrete example of the strength of RPM's method of performing upgrades.
Since RPM's install command is smart enough to handle upgrades, RPM's upgrade command is
really just another way to specify an install. Some people never even bother to use RPM's install
command; they always use rpm -U. Maybe the "-U" should stand for, "Uh, do the right thing"…

They're Nearly Identical…
Given the fact that rpm -U can be used as a replacement to rpm -i, it follows that most of the op-
tions available for rpm -U are identical to those used with rpm -i. Therefore, to keep the duplication
to a minimum, we'll discuss only those options that are unique to rpm -U, or that behave differently
from the same option when used with rpm -i. The table on Table 4.1, “rpm -U Command Syntax”
at the start of this chapter shows all valid options to RPM's upgrade command, and indicates which
are identical to those used with rpm -i.

--oldpackage: Upgrade To An Older Version
This option might be used a bit more by people that like to stay on the "bleeding edge" of new ver-
sions of software, but eventually, everyone will probably need to use it. Usually, the situation plays
out like this:

• You hear about some new software that sounds pretty nifty, so you download the .rpm file and
install it.

• The software is great! It does everything you ask for, and more. You end up using it every day
for the next few months.

• You hear that a new version of your favorite software is available. You waste no time in getting
the package. You upgrade the software by using rpm -U. No problem!

• Fingers arched in anticipation, you launch the new version. Your computer's screen goes blank!

Looks like a bug in the new version. Now what do you do? Hmmm. Maybe you can just "upgrade"
to the older version. Let's try to go back to release 2 of cdp-0.33 from release 3:

rpm -Uv cdp-0.33-2.i386.rpm

Installing cdp-0.33-2.i386.rpm
package cdp-0.33-3 (which is newer) is already installed
error: cdp-0.33-2.i386.rpm cannot be installed

#

That didn't work very well. At least it told us just what the problem was — we were trying to up-
grade to an older version of a package that is already installed. Fortunately, there's a special option
for just this situation: --oldpackage. Let's give it a try:

rpm -Uv --oldpackage cdp-0.33-2.i386.rpm

Installing cdp-0.33-2.i386.rpm

#

By using the --oldpackage option, release 3 of cdp-0.33 is history, and has been replaced by re-
lease 2.

Using RPM to Upgrade Packages

57

4 Pun intended.

--force: The Big Hammer
Adding --force to an upgrade command is a way of saying "Upgrade it anyway!" In essence, it adds
--replacepkgs, --replacefiles, and --oldpackage to the command. Like a big hammer, --force is an
irresistible force 4 that makes things happen. In fact, the only thing that will prevent a --force'ed up-
grade from proceeding is a dependency conflict.

And like a big hammer, it pays to fully understand why you need to use --force before actually us-
ing it.

--noscripts: Do Not Execute Install and Uninstall
Scripts

The --noscripts option prevents a package's pre- and post-install scripts from being executed. This
is no different than the option's behavior when used with RPM's install command. However, there is
an additional point to consider when the option is used during an upgrade. The following example
uses specially-built packages that display messages when their scripts are executed by RPM:

rpm -i bother-2.7-1.i386.rpm

This is the bother 2.7 preinstall script
This is the bother 2.7 postinstall script

#

In this case, a package has been installed. As expected, its scripts are executed. Next, let's upgrade
this package:

rpm -U bother-3.5-1.i386.rpm

This is the bother 3.5 preinstall script
This is the bother 3.5 postinstall script
This is the bother 2.7 preuninstall script
This is the bother 2.7 postuninstall script

#

This is a textbook example of the sequence of events during an upgrade. The new version of the
package is installed (as shown by the pre- and post-install scripts being executed). Finally, the previ-
ous version of the package is removed (showing the pre- and post-uninstall scripts being executed).

There are really no surprises there — it worked just the way it was meant to. This time, let's use the
--noscripts option when the time comes to perform the upgrade:

rpm -i bother-2.7-1.i386.rpm

This is the bother 2.7 preinstall script
This is the bother 2.7 postinstall script

#

Again, the first package is installed, and its scripts are executed. Now let's try the upgrade using the
--noscripts option:

Using RPM to Upgrade Packages

58

rpm -U --noscripts bother-3.5-1.i386.rpm

This is the bother 2.7 preuninstall script
This is the bother 2.7 postuninstall script

#

The difference here is that the --noscripts option prevented the new package's scripts from execut-
ing. The scripts from the package being erased were still executed.

Using RPM to Upgrade Packages

59

Chapter 5. Getting Information About
Packages

Table 5.1. rpm -q Command Syntax

rpm -q (or --query) options

Package Selection Options Page

pkg1 … pkgN Query installed package(s) the section called “The Package La-
bel”

-p <file>(or "-") Query package file <file> (URLs
OK)

the section called “ -p <file> —
Query a Specific RPM Package File
”

-f <file> Query package owning <file> the section called “ -f <file> —
Query the Package Owning
<file> ”

-a Query all installed packages the section called “-a — Query All
Installed Packages”

--whatprovides <x> Query packages providing capabil-
ity <x>

the section called “ --whatprovides
<x>: Query the Packages That
Provide Capability <x> ”

-g <group> Query packages belonging to group
<group>

the section called “ -g <group>:
Query Packages Belonging To
Group <group> ”

--whatrequires <x> Query packages requiring capability
<x>

the section called “ --whatrequires
<x>: Query the Packages That Re-
quire Capability <x> ”

Information Selection Options Page

<null> Display full package label the section called “The Package La-
bel”

-i Display summary package informa-
tion

the section called “-i — Display
Package Information”

-l Display list of files in package the section called “-l — Display the
Package's File List”

-c Display list of configuration files the section called “ -c — Display
the Package's List of Configuration
Files ”

-d Display list of documentation files the section called “ -d — Display a
List of the Package's Documenta-
tion ”

-s Display list of files in package, with
state

the section called “ -s — Display
the State of Each File in the Pack-
age ”

--scripts Display install, uninstall, verify
scripts

the section called “ --scripts —
Show Scripts Associated With a
Package ”

--queryformat (or --qf) Display queried data in custom
format

the section called “ --queryformat
— Construct a Custom Query Re-
sponse ”

--dump Display all verifiable information
for each file

the section called “ --dump: Dis-
play All Verifiable Information for
Each File ”

60

--provides Display capabilities package
provides

the section called “ --provides: Dis-
play Capabilities Provided by the
Package ”

--requires (or -R) Display capabilities package re-
quires

the section called “ --requires: Dis-
play Capabilities Required by the
Package ”

General Options Page

-v Display additional information the section called “ -v — Display
Additional Information ”

-vv Display debugging information the section called “ Getting a lot
more information with -vv ”

--root <path> Set alternate root to <path> the section called “ --root <path>:
Use <path> As An Alternate Root
”

--rcfile <rcfile> Set alternate rpmrc file to
<rcfile>

the section called “ --rcfile
<rcfile>: Use <rcfile> As
An Alternate rpmrc File ”

--dbpath <path> Use <path> to find the RPM data-
base

the section called “ --dbpath
<path>: Use <path> To Find
RPM Database ”

rpm -q — What does it do?
One of the nice things about using RPM is that the packages you manage don't end up going into
some kind of black hole. Nothing would be worse than to install, upgrade, and erase several differ-
ent packages and not have a clue as to what's on your system. In fact, RPM's query function can help
you get out of sticky situations like:

• You're poking around your system, and you come across a file that you just can't identify. Where
did it come from?

• Your friend sends you a package file, and you have no idea what the package does, what it in-
stalls, or where it originally came from.

• You know that you installed XFree86 a couple months ago, but you don't know what version,
and you can't find any documentation on it.

The list could go on, but you get the idea. The rpm -q command is what you need. If you're the kind
of person that doesn't like to have more options than you know what to do with, rpm -q might look
imposing. But fear not. Once you have a handle on the basic structure of an RPM query, it'll be a
piece of cake.

The Parts of an RPM Query
It becomes easy to construct a query command once you understand the individual parts. First is the
-q (You can also use --query, if you like). After all, you need to tell RPM what function to perform,
right? The rest of a query command consists of two distinct parts: package selection (or what pack-
ages you'd like to query), and information selection (or what information you'd like to see). Let's
take a look at package selection first:

Query Commands, Part One: Package Selection
The first thing you'll need to decide when issuing an RPM query is what package (or packages)
you'd like to query. RPM has several ways to specify packages, so you have quite an assortment to
choose from.

Getting Information About Packages

61

The Package Label

In earlier chapters, we discussed RPM's package label, a string that uniquely identifies every in-
stalled package. Every label contains three pieces of information:

1. The name of the packaged software.

2. The version of the packaged software.

3. The package's release number.

When issuing a query command using package labels, you must always include the package name.
You can also include the version and even the release, if you like. The only restrictions are that each
part of the package label specified must be complete, and that if any parts of the package label are
missing, all parts to the right must be omitted as well. This second restriction is just a long way of
saying that if you specify the release, you must also specify the version as well. Let's look at a few
examples.

Say, for instance, you've recently installed a new version of the C libraries, but you can't remember
the version number:

rpm -q libc

libc-5.2.18-1

#

In this type of query, RPM returns the complete package label for all installed packages that match
the given information. In the example above, if version 5.2.17 of the C libraries was also installed,
its package label would have been displayed, too.

In this example, we've included the version as well as the package name:

rpm -q rpm-2.3

rpm-2.3-1

#

Note, however, that RPM is a bit picky about specifying package names. Here are some queries for
the C library that won't work:

rpm -q LibC

package LibC is not installed

#
rpm -q lib

package lib is not installed

#
rpm -q "lib*"

package lib* is not installed

#

Getting Information About Packages

62

rpm -q libc-5

package libc-5 is not installed

#
rpm -q libc-5.2.1

package libc-5.2.1 is not installed

#

As you can see, RPM is case sensitive about package names and cannot match partial names, ver-
sion numbers, or release numbers. Nor can it use the wildcard characters we've come to know and
love. As we've seen, however, RPM can perform the query when more than one field of the package
label is present. In the above case, rpm -q libc-5.2.18, or even rpm -q libc-5.2.18-1 would have
found the package, libc-5.2.18-1.

Querying based on package labels may seem a bit restrictive. After all, you need to know the exact
name of a package in order to perform a query on it. But there are other ways of specifying pack-
ages…

-a — Query All Installed Packages

Want lots of information fast? Using the -a option, you can query every package installed on your
system. For example:

rpm -qa

ElectricFence-2.0.5-2
ImageMagick-3.7-2
…
tetex-xtexsh-0.3.3-8
lout-3.06-4

#

(On a system installed using RPM, the number of packages can easily number 200 or more; we've
deleted most of the output.)

The -a option can produce mountains of output, which makes it a prime candidate for piping
through the many Linux/UNIX commands available. One of the prime candidates would be a pager
such as more, so that the list of installed packages could be viewed a screenful at a time.

Another handy command to pipe rpm -qa's output through is grep. In fact, using grep, it's possible
to get around RPM's lack of built-in wildcard processing:

rpm -qa | grep -i sysv

SysVinit-2.64-2

#

In this example, we were able to find the SysVinit package, even though we didn't have the com-
plete package name, or capitalization.

-f <file> — Query the Package Owning <file>

How many times have you found a program sitting on your system and wondered "what does it do?"
Well, if the program was installed by RPM as part of a package, it's easy to find out. Simply use the
-f option. Example: You find a strange program called ls in /bin (Okay, it is a contrived example).

Getting Information About Packages

63

Wonder what package installed it? Simple!

rpm -qf /bin/ls

fileutils-3.12-3

#

If you happen to point RPM at a file it didn't install, you'll get a message similar to the following:

rpm -qf .cshrc

file /home/ed/.cshrc is not owned by any package

#

A Tricky Detail

It's possible that you'll get the "not owned by any package" message in error. Here's an example of
how it can happen:

rpm -qf /usr/X11/bin/xterm

file /usr/X11/bin/xterm is not owned by any package

#

As you can see, we're trying to find out what package the xterm program is part of. The first ex-
ample failed, which might lead one to believe that xterm really isn't owned by any package.

However, let's look at a directory listing:

ls -lF /usr

…
lrwxrwxrwx 1 root root 5 May 13 12:46 X11 -> X11R6/
drwxrwxr-x 7 root root 1024 Mar 21 00:21 X11R6/
…

#

(We've truncated the list; normally /usr is quite a bit more crowded than this.)

The key here is the line ending with "X11 -> X11R6/". This is known as a "symbolic link". It's a
way of referring to a file (here, a directory file) by another name. In this case, if we used the path /
usr/X11, or /usr/X11R6, it shouldn't make a difference. It certainly doesn't make a difference
to programs that simply want access to the file. But it does make a difference to RPM, because RPM
doesn't use the filename to access the file. RPM uses the filename as a key into its database. It would
be very difficult, if not impossible, to keep track of all the symlinks on a system and try every pos-
sible path to a file during a query.

What to do? There are two options:

1. Make sure you always specify a path free of symlinks. This can be pretty tough, though. An al-
ternative approach is to use namei to track down symlinks:

Getting Information About Packages

64

namei /usr/X11/bin/xterm

f: /usr/X11/bin/xterm
d /
d usr
l X11 -> X11R6
d X11R6

d bin
- xterm

#

It's pretty easy to see the X11 to X11R6 symlink. Using this approach you can enter the non-
symlinked path and get the desired results:

rpm -qf /usr/X11R6/bin/xterm

XFree86-3.1.2-5

#

2. Change your directory to the one holding the file you want to query. Even if you use a sym-
linked path to get there, querying the file should then work as you'd expect:

cd /usr/X11/bin
rpm -qf xterm

XFree86-3.1.2-5

#

So if you get a "not owned by any package" error, and you think it may not be true, try one of the
approaches above.

-p <file> — Query a Specific RPM Package File

Up to now, every means of specifying a package to an RPM query focused on packages that had
already been installed. While it's certainly very useful to be able to dredge up information about
packages that are already on your system, what about packages that haven't yet been installed? The -
p option can do that for you.

One situation where this capability would help, occurs when the name of a package file has been
changed. Since the name of the file containing a package has nothing to do with the name of the
package (though, by tradition it's nice to name package files consistently), we can use this option to
find out exactly what package a file contains:

rpm -qp foo.bar

rpm-2.3-1

#

With one command RPM gives you the answer. 1

Getting Information About Packages

65

1 On most Linux systems, the file command can be used to obtain similar information. See Appendix A, Format of the RPM File for details
on how to add this capability to your system's file command.

The -p option can also use Uniform Resource Locators to specify package files. See the section
called “URLs — Another Way to Specify Package Files” for more information on using URLs.

There's one last trick up -p's sleeve — it can also perform a query by reading a package from stand-
ard input. Here's an example:

cat bother-3.5-1.i386.rpm | rpm -qp -

bother-3.5-1

#

We piped the output of cat into RPM. The dash at the end of the command line directs RPM to read
the package from standard input.

-g <group>: Query Packages Belonging To Group <group>

When a package is built, the package builder must classify the package, grouping it with other pack-
ages that perform similar functions. RPM gives you the ability to query installed packages based on
their groups. For example, there is a group known as Base. This group consists of packages that
provide low-level structure for a Linux distribution. Let's see what installed packages make up the
Base group:

rpm -qg Base

setup-1.5-1
pamconfig-0.50-5
filesystem-1.2-1
crontabs-1.3-1
dev-2.3-1
etcskel-1.1-1
initscripts-2.73-1
mailcap-1.0-3
pam-0.50-17
passwd-0.50-2
redhat-release-4.0-1
rootfiles-1.3-1
termcap-9.12.6-5

#

One thing to keep in mind is that group specifications are case-sensitive. Issuing the command rpm
-qg base won't produce any output.

--whatprovides <x>: Query the Packages That Provide Capability
<x>

RPM provides extensive support for dependencies between packages. The basic mechanism used is
that a package may require what another package provides. The thing that is required and provided
can be a shared library's soname. It can also be a character string chosen by the package builder. In
any case, it's important to be able to display which packages provide a given capability.

This is just what the --whatprovides option does. When the option, followed by a capability, is ad-
ded to a query command, RPM will select those packages that provide the capability. Here's an ex-
ample:

rpm -q --whatprovides module-info

Getting Information About Packages

66

kernel-2.0.18-5

#

In this case, the only package that provides the module-info capability is kernel-2.0.18-5.

--whatrequires <x>: Query the Packages That Require Capability
<x>

The --whatrequires option is the logical complement to the --whatprovides option described
above. It is used to display which packages require the specified capability. Expanding on the ex-
ample we started with --whatprovides, let's see which packages require the module-info capab-
ility:

rpm -q --whatrequires module-info

kernelcfg-0.3-2

#

There's only one package that requires module-info — kernelcfg-0.3-2.

Query Commands, Part Two: Information Selection
After specifying the package (or packages) you wish to query, you'll need to figure out just what in-
formation you'd like RPM to retrieve. As we've seen, by default, RPM only returns the complete
package label. But there's much more to a package than that. Here, we'll explore every information
selection option available to us.

-i — Display Package Information

Adding -i to rpm -q tells RPM to give you some information on the package or packages you've se-
lected. For the sake of clarity, let's take a look at what it gives you and explain what you're looking
at:

rpm -qi rpm

Name : rpm Distribution: Red Hat Linux Vanderbilt
Version : 2.3 Vendor: Red Hat Software
Release : 1 Build Date: Tue Dec 24 09:07:59 1996
Install date: Thu Dec 26 23:01:51 1996 Build Host: porky.redhat.com
Group : Utilities/System Source RPM: rpm-2.3-1.src.rpm
Size : 631157
Summary : Red Hat Package Manager
Description :
RPM is a powerful package manager, which can be used to build, install,
query, verify, update, and uninstall individual software packages. A
package consists of an archive of files, and package information, including
name, version, and description.

#

There's quite a bit of information here, so let's go through it entry by entry:

• Name — The name of the package you queried. Usually (but not always) it bears some resemb-
lance to the name of the underlying software.

Getting Information About Packages

67

2 Note to software packagers: Choose your build machine names wisely! A silly or offensive name might be embarrassing…

• Version — The version number of the software, as specified by the software's original creator.

• Release — The number of times a package consisting of this software has been packaged. If
the version number should change, the release number should start over again at "1".

As you've probably noticed, these three pieces of information comprise the package label we've
come to know and love. Continuing, we have:

• Install date — This is the time when the package was installed on your system.

• Group — In our example, this looks suspiciously like a path. If you went searching madly for a
directory tree by that name, you'd come up dry — it isn't a set of directories at all.

When a package builder starts to create a new package, they enter a list of words that describe
the software. The list, which goes from least specific to most specific, attempts to categorize the
software in a concise manner. The primary use for the group is to enable graphically oriented
package managers based on RPM to present packages grouped by function. Red Hat Linux's
glint command does this.

• Size — This is the size (in bytes) of every file in this package. It might make your decision to
erase an unused package easier if you see six or more digits here.

• Summary — This is a concise description of the packaged software.

• Description — This is a verbose description of the packaged software. Some descriptions
might be more, well, descriptive than others, but hopefully it will be enough to clue you in as to
the software's role in the greater scheme of things.

• Distribution — The word "distribution" is really not the best name for this field. "Product"
might be a better choice. In any case, this is the name of the product this package is a part of.

• Vendor — The organization responsible for building this package.

• Build Date — The time the package was created.

• Build Host — The name of the computer system that built the package. 2

• Source RPM — The process of building a package results in two files:

1. The package file used to install the packaged software. This is sometimes called the binary
package.

2. The package file containing the source code and other files used to create the binary pack-
age file. This is known as the source RPM package file. This is the filename that is dis-
played in this field.

Unless you want to make changes to the software, you probably won't need to worry about
source packages. But if you do, stick around, because the second part of this book is for you…

-l — Display the Package's File List

Adding -l to rpm -q tells RPM to display the list of files that are installed by the specified package
or packages. If you've used ls before, you won't be surprised by RPM's file list.

Here's a look at one of the smaller packages on Red Hat Linux — adduser:

rpm -ql adduser

/usr/sbin/adduser

#

Getting Information About Packages

68

The adduser package consists of only one file, so there's only one filename displayed.

-v — Display Additional Information

In some cases, the -v option can be added to a query command for additional information. The -l op-
tion we've been discussing is an example of just such a case. Note how the -v option adds verbosity:

rpm -qlv adduser

-rwxr-xr-x- root root 3894 Feb 25 13:45 /usr/sbin/adduser

#

Looks a lot like the output from ls, doesn't it? Looks can be deceiving. Everything you see here is
straight from RPM's database. However, the format is identical to ls, so it's more easily understood.
If this is Greek to you, consult the ls man page.

-c — Display the Package's List of Configuration Files

When -c is added to an rpm -q command, RPM will display the configuration files that are part of
the specified package or packages. As mentioned earlier in the book, config files are important, be-
cause they control the behavior of the packaged software. Let's take a look at the list of config files
for XFree86:

rpm -qc XFree86

/etc/X11/fs/config
/etc/X11/twm/system.twmrc
/etc/X11/xdm/GiveConsole
/etc/X11/xdm/TakeConsole
/etc/X11/xdm/Xaccess
/etc/X11/xdm/Xresources
/etc/X11/xdm/Xservers
/etc/X11/xdm/Xsession
/etc/X11/xdm/Xsetup_0
/etc/X11/xdm/chooser
/etc/X11/xdm/xdm-config
/etc/X11/xinit/xinitrc
/etc/X11/xsm/system.xsm
/usr/X11R6/lib/X11/XF86Config

#

These are the files you'd want to look at first if you were looking to customize XFree86 for your
particular needs. Just like -l, we can also add v for more information:

rpm -qcv XFree86

-r--r--r--- root root 423 Mar 21 00:17 /etc/X11/fs/config
…
lrwxrwxrwx- root root 30 Mar 21 00:29 /usr/X11R6/lib/X11/XF86Config -> ../../../../etc/X11/XF86Config

#

(Note that last file: RPM will display symbolic links, as well.)

-d — Display a List of the Package's Documentation

Getting Information About Packages

69

When -d is added to a query, we get a list of all files containing documentation for the named pack-
age or packages. This is a great way to get up to speed when you're having problems with unfamiliar
software. As with -c and -l, you'll see either a simple list of filenames, or (if you've added -v) a more
comprehensive list. Here's an example that might look daunting at first, but really isn't:

rpm -qdcf /sbin/dump

/etc/dumpdates
/usr/doc/dump-0.3-5
/usr/doc/dump-0.3-5/CHANGES
/usr/doc/dump-0.3-5/COPYRIGHT
/usr/doc/dump-0.3-5/INSTALL
/usr/doc/dump-0.3-5/KNOWNBUGS
/usr/doc/dump-0.3-5/THANKS
/usr/doc/dump-0.3-5/dump-0.3.announce
/usr/doc/dump-0.3-5/dump.lsm
/usr/doc/dump-0.3-5/linux-1.2.x.patch
/usr/man/man8/dump.8
/usr/man/man8/rdump.8
/usr/man/man8/restore.8
/usr/man/man8/rmt.8
/usr/man/man8/rrestore.8

#

Let's take that alphabet soup set of options, one letter at a time:

• q — Perform a query.

• d — List all documentation files.

• c — List all config files.

• f — Query the package that owns the specified file (/sbin/dump, in this case).

The list of files represents all the documentation and config files that apply to the package owning /
sbin/dump.

-s — Display the State of Each File in the Package

Unlike the past three sections, which dealt with a list of files of one type or another, adding -s to a
query will list the state of the files that comprise one or more packages. I can hear you out there;
you're saying, "What is the state of a file?" For every file that RPM installs, there is an associated
state. There are four possible states:

1. normal — A file in the normal state has not been modified by installing another package on
the system.

2. replaced — Files in the replaced state have been modified by installing another package
on the system.

3. not installed — A file is classified as not installed when it, er, isn't installed! This
state is normally seen only if the package was partially installed. An example of a partially in-
stalled package would be one that was installed with the --excludedocs option. Using this op-
tion, no documentation files would be installed. The RPM database would still contain entries
for these missing files, but their state would be not installed.

4. net shared — The net shared state is used to support client systems that NFS mount
portions of their filesystems from a server. Since the server most likely exports filesystems to
more than one client, if a client erased a package that contained files on a shared filesystem,

Getting Information About Packages

70

3 For more information on rpmrc file entries, please refer to Appendix B, The rpmrc File.

other client systems would have incompletely installed packages. The net shared state is
used to alert RPM to the fact that a file is on a shared filesystem and should not be erased. Files
will be in the net shared state when two things happen:

a. The netsharedpath rpmrc file entry has been changed from its default (null) value. 3

b. The file is to be installed in a directory within a net shared path.

Here's an example showing how file states appear:

rpm -qs adduser

normal /usr/sbin/adduser

#

(That normal at the start of the line is the state, followed by the file name)

The file state is one of the tools RPM uses to determine the most appropriate action to take when
packages are installed or erased.

Now would the average person need to check the states of files? Not really. But if there should be
problems, this kind of information can help get things back on track.

--provides: Display Capabilities Provided by the Package

By adding --provides to a query command, we can see the capabilities provided by one or more
packages. If the package doesn't provide any capabilities, the --provides option produces no output:

rpm -q --provides rpm
#

However, if a package does provide capabilities, they will be displayed:

rpm -q --provides foonly

index

#

It's important to remember that capabilities are not filenames. In the above example, the foonly
package contains no file called index; it's just a character string the package builder chose. This is
no different from the following example:

rpm -q --provides libc

libm.so.5
libc.so.5

#

While there might be symlinks by those names in /lib, capabilities are a property of the package,
not a file contained in the package!

Getting Information About Packages

71

--requires: Display Capabilities Required by the Package

The --requires option (-R is equivalent) is the logical complement to the --provides option. It dis-
plays the capabilities required by the specified package(s). If a package has no requirements, there's
no output:

rpm -q --requires adduser
#

In cases where there are requirements, they are displayed as follows:

rpm -q --requires rpm

libz.so.1
libdb.so.2
libc.so.5

#

It's also possible that you'll come across something like this:

rpm -q --requires blather

bother >= 3.1

#

Packages may also be built to require another package. This requirement can also include specific
versions. In the example above, the bother package is required by blather; specifically, a ver-
sion of bother greater than or equal to 3.1.

Here's something worth understanding. Let's say we decide to track down the bother that
blather says it requires. If we use RPM's query capabilities, we could use the --whatprovides
package selection option to try to find it:

rpm -q --whatprovides bother

no package provides bother

#

No dice. This might lead you to believe that the blather package has a problem. The moral of this
story is that, when trying to find out what package fulfills another package's requirements, it's a
good idea to also try a simple query using the requirement as a package name. Continuing our ex-
ample above, let's see if there's a package called bother:

rpm -q bother

bother-3.5-1

#

Getting Information About Packages

72

Bingo! However, if we see what capabilities the bother package provides, we come up dry:

rpm -q --provides bother
#

The reason for the lack of output is that all packages, by default, "provide" their package name (and
version).

--dump: Display All Verifiable Information for Each File

The --dump option is used to display every piece of information RPM has on one or more files lis-
ted in its database. The information is listed in a very concise fashion. Since the --dump option dis-
plays file-related information, the list of files must be chosen by using the -l, -c, or -d options (or
some combination thereof):

rpm -ql --dump adduser

/usr/sbin/adduser 4442 841083888 ca5fa53dc74952aa5b5e3a5fa5d8904b 0100755
root root 0 0 0 X

#

What does all this stuff mean? Let's go through it, item-by-item:

• The /usr/sbin/adduser is simple: it's the name of the file being dump'ed.

• 4442 is the size of the file, in bytes.

• How about 841083888? It's the time the file was last modified, in seconds past the Unix zero
date of January 1, 1970.

• The ca5fa53dc74952aa5b5e3a5fa5d8904b is the MD5 checksum of the file's contents,
all 128 bits of it.

• If you guessed 0100755 was the file's mode, you'd be right.

• The first root represents the file's owner.

• The second root is the file's group.

• We'll take the next part (0 0) in one chunk. The first zero shows whether the file is a config
file. If zero, as in this case, then the file is not a config file. The next zero shows whether the file
is documentation. Again, since there is a zero here, this file isn't documentation, either.

• The final 0 represents the file's major and minor numbers. These are set only for device special
files. Otherwise, it will be zero.

• If the file were a symlink, the spot taken by the X would contain a path pointing to the linked
file.

Normally, the --dump option is used by people that want to extract the file-related information from
RPM and process it somehow.

--scripts — Show Scripts Associated With a Package

If you add --scripts (that's two dashes) to a query, you get to see a little bit more of RPM's underly-

Getting Information About Packages

73

4 For more information on package verification, please see the section called “rpm -V — What Does it Do?”.

ing magic:

rpm -q --scripts XFree86

preinstall script:
(none)

postinstall script:
/sbin/ldconfig
/sbin/pamconfig --add --service=xdm --password=none --sesslist=none

preuninstall script:
(none)

postuninstall script:
/sbin/ldconfig
if ["$1" = 0] ; then
/sbin/pamconfig --remove --service=xdm --password=none --sesslist=none

fi

verify script:
(none)

#

In this particular case, the XFree86 package has two scripts: one labeled postinstall, and one
labeled postuninstall. As you might imagine, the postinstall script is executed just after the
package's files have been installed; the postuninstall script is executed just after the package's files
have been erased.

Based on the labels in this example, you'd probably imagine that a package can have as many as five
different scripts. You'd be right:

1. The preinstall script, which is executed just before the package's files are installed.

2. The postinstall script, which is executed just after the package's files are installed.

3. The preuninstall script, which is executed just before the package's files are removed.

4. The postuninstall script, which is executed just after the package's files are removed.

5. And finally, the verify script. While it's easy to figure out the other scripts' functions based on
their name, what does a script called verify do? Well, we haven't gotten to it yet, but packages
can also be verified for proper installation. This script is used during verification. 4

Is this something you'll need very often? As in the case of displaying file states, not really. But when
you need it, you really need it!

--queryformat — Construct a Custom Query Response

OK, say you're still not satisfied. You'd like some additional information, or you think a different
format would be easier on the eyes. Maybe you want to take some information on the packages
you've installed and run it through a script for some specialized processing. You can do it, using the
--queryformat option. In fact, if you look back at the output of the -i option, RPM was using -
-queryformat internally. Here's how it works:

On the RPM command line, include --queryformat. Right after that, enter a format string, enclosed
in single quotes "'".

The format string can consist of a number of different components:

Getting Information About Packages

74

• Literal text, including escape sequences.

• Tags, with optional field width, formatting, and iteration information.

• Array Iterators.

Let's look at each of these components.

Literal text

Any part of a format string that is not associated with tags or array iterators will be treated as literal
text. Literal text is just that: It's text that is printed just as it appears in the format string. In fact, a
format string can consist of nothing but literal text, although the output wouldn't tell us much about
the packages being queried. Let's give the --queryformat option a try, using a format string with
nothing but literal text:

rpm -q --queryformat 'This is a test!' rpm

This is a test!#

The RPM command might look a little unusual, but if you take out the --queryformat option, along
with its format string, you'll see this is just an ordinary query of the rpm package. When the -
-queryformat option is present, RPM will use the text immediately following the option as a format
string. In our case, the format string is 'This is a test!'. The single quotes are required. Otherwise,
it's likely your shell will complain about some of the characters contained in the average format
string.

The output of this command appears on the second line. As we can see, the literal text from the
format string was printed exactly as it was entered.

Carriage Control Escape Sequences

Wait a minute. What is that # doing at the end of the output? Well, that's our shell prompt. You see,
we didn't direct RPM to move to a new line after producing the output, so the shell prompt ended up
being tacked to the end of our output.

Is there a way to fix that? Yes, there is. We need to use an escape sequence. An escape sequence is a
sequence of characters that starts with a backslash (\). Escape sequences add carriage control in-
formation to a format string. The following escape sequences can be used:

• \a — Produces a bell or similar alert.

• \b — Backspaces one character.

• \f — Outputs a form-feed character.

• \n — Outputs a newline character sequence.

• \r — Outputs a carriage return character.

• \t — Causes a horizontal tab.

• \v — Causes a vertical tab.

• \\ — Displays a backslash character.

Based on this list, it seems that a \n escape sequence at the end of the format string will put our shell
prompt on the next line:

Getting Information About Packages

75

5 RPM uses printf to do --queryformat formatting. Therefore, you can use any of the printf format modifiers discussed in the
printf(3) man page.

rpm -q --queryformat 'This is a test!\n' rpm

This is a test!

#

Much better…

Tags

The most important parts of a format string are the tags. Each tag specifies what information is to be
displayed and can optionally include field-width, as well as justification and data formatting instruc-
tions. 5 But for now, let's look at the basic tag. In fact, let's look at three — the tags that print the
package name, version, and release.

Strangely enough, these tags are called NAME, VERSION, and RELEASE. In order to be used in
a format string, the tag names must be enclosed in curly braces and preceded by a percent sign. Let's
give it a try:

rpm -q --queryformat '%{NAME}%{VERSION}%{RELEASE}\n' rpm

rpm2.31

#

Let's add a dash between the tags and see if that makes the output a little easier to read:

rpm -q --queryformat '%{NAME}-%{VERSION}-%{RELEASE}\n' rpm

rpm-2.3-1

#

Now our format string outputs standard package labels.

Field Width and Justification

Sometimes it's desirable to allocate fields of a particular size for a tag. This is done by putting the
desired field width between the tag's leading percent sign, and the opening curly brace. Using our
package-label-producing format string, let's allocate a 20-character field for the version:

rpm -q --queryformat '%{NAME}-%20{VERSION}-%{RELEASE}\n' rpm

rpm- 2.3-1

#

The result is a field of 20 characters: 17 spaces, followed by the three characters that make up the
version.

In this case, the version field is right justified; that is, the data is printed at the far right of the output
field. We can left justify the field by preceding the field width specification with a dash:

Getting Information About Packages

76

rpm -q --queryformat '%{NAME}-%-20{VERSION}-%{RELEASE}\n' rpm

rpm-2.3 -1

#

Now the version is printed at the far left of the output field. You might be wondering what would
happen if the field width specification didn't leave enough room for the data being printed. The field
width specification can be considered the minimum width the field will take. If the data being prin-
ted is wider, the field will expand to accommodate the data.

Modifiers — Making Data More Readable

While RPM does its best to appropriately display the data from a --queryformat, there are times
when you'll need to lend a helping hand. Here's an example. Say we want to display the name of
each installed package, followed by the time the package was installed. Looking through the avail-
able tags, we see INSTALLTIME. Great! Looks like this will be simple:

rpm -qa --queryformat '%{NAME} was installed on %{INSTALLTIME}\n'

setup was installed on 845414601
pamconfig was installed on 845414602
filesystem was installed on 845414607
…
rpm was installed on 851659311
pgp was installed on 846027549

#

Well, that's a lot of output, but not very useful. What are those numbers? RPM didn't lie -- they're
the time the packages were installed. The problem is, the times are being displayed in their numeric
form used internally by the operating system, and humans like to see the day, month, year, and so
on.

Fortunately, there's a modifier for just this situation. The name of the modifier is :date, and it fol-
lows the tag name. Let's try our example again, this time using :date:

rpm -qa --queryformat '%{NAME} was installed on %{INSTALLTIME:date}\n'

setup was installed on Tue Oct 15 17:23:21 1996
pamconfig was installed on Tue Oct 15 17:23:22 1996
filesystem was installed on Tue Oct 15 17:23:27 1996
…
rpm was installed on Thu Dec 26 23:01:51 1996
pgp was installed on Tue Oct 22 19:39:09 1996

#

That sure is a lot easier to understand, isn't it?

Here's a list of the available modifiers:

• The :date modifier displays dates in human-readable form. It transforms 846027549 into Tue
Oct 22 19:39:09 1996.

• The :perms modifier displays file permissions in an easy-to-read format. It changes -32275 to
-rwxr-xr-x-.

Getting Information About Packages

77

• The :depflags modifier displays the version comparison flags used in dependency processing, in
human-readable form. It turns 12 into >=.

• The :fflags modifier displays a c if the file has been marked as being a configuration file, a d if
the file has been marked as being a documentation file, and blank otherwise. Thus, 2 becomes d.

Array Iterators

Until now, we've been using tags that represent single data items. There is, for example, only one
package name or installation date for each package. However, there are other tags that can represent
many different pieces of data. One such tag is FILENAMES, which can be used to display the
names of every file contained in a package.

Let's put together a format string that will display the package name, followed by the name of every
file that package contains. We'll try it on the adduser package first, since it contains only one file:

rpm -q --queryformat '%{NAME}: %{FILENAMES}\n' adduser

adduser: /usr/sbin/adduser

#

Hey, not bad — got it on the first try. Now let's try it on a package with more than one file:

rpm -q --queryformat '%{NAME}: %{FILENAMES}\n' etcskel

etcskel: (array)

#

Hmmm. What went wrong? It worked before… Well, it worked before because the adduser pack-
age contained only one file. The FILENAMES tag points to an array of names, so when there is
more than one file in a package, there's a problem.

But there is a solution. It's called an iterator. An iterator can step through each entry in an array,
producing output as it goes. Iterators are created when square braces enclose one or more tags and
literal text. Since we want to iterate through the FILENAMES array, let's enclose that tag in the
iterator:

rpm -q --queryformat '%{NAME}: [%{FILENAMES}]\n' etcskel

etcskel: /etc/skel/etc/skel/.Xclients/etc/skel/.Xdefaults/etc/skel/.ba

#

There was more output — it went right off the screen in one long line. The problem? We didn't in-
clude a newline escape sequence inside the iterator. Let's try it again:

rpm -q --queryformat '%{NAME}: [%{FILENAMES}\n]' etcskel

etcskel: /etc/skel
/etc/skel/.Xclients
/etc/skel/.Xdefaults
/etc/skel/.bash_logout
/etc/skel/.bash_profile

Getting Information About Packages

78

/etc/skel/.bashrc
/etc/skel/.xsession

#

That's more like it. If we wanted, we could put another file-related tag inside the iterator. If we in-
cluded the FILESIZES tag, we'd be able to see the name of each file, as well as how big it was:

rpm -q --queryformat '%{NAME}: [%{FILENAMES} (%{FILESIZES} bytes)\n]' etcskel

etcskel: /etc/skel (1024 bytes)
/etc/skel/.Xclients (551 bytes)
/etc/skel/.Xdefaults (3785 bytes)
/etc/skel/.bash_logout (24 bytes)
/etc/skel/.bash_profile (220 bytes)
/etc/skel/.bashrc (124 bytes)
/etc/skel/.xsession (9 bytes)

#

That's pretty nice. But it would be even nicer if the package name appeared on each line, along with
the filename and size. Maybe if we put the NAME tag inside the iterator:

rpm -q --queryformat '[%{NAME}: %{FILENAMES} \
? (%{FILESIZES} bytes)\n]' etcskel

etcskel: /etc/skel(parallel array size mismatch)#

The error message says it all. The FILENAMES and FILESIZES arrays are the same size. The
NAME tag isn't even an array. Of course the sizes don't match!

Iterating Single-Entry Tags

If a tag only has one piece of data, it's possible to put it in an iterator and have its one piece of data
displayed with every iteration. This is done by preceding the tag name with an equal sign. Let's try it
out on our current example:

rpm -q --queryformat '[%{=NAME}: %{FILENAMES} (%{FILESIZES} bytes)\n]' etcskel

etcskel: /etc/skel (1024 bytes)
etcskel: /etc/skel/.Xclients (551 bytes)
etcskel: /etc/skel/.Xdefaults (3785 bytes)
etcskel: /etc/skel/.bash_logout (24 bytes)
etcskel: /etc/skel/.bash_profile (220 bytes)
etcskel: /etc/skel/.bashrc (124 bytes)
etcskel: /etc/skel/.xsession (9 bytes)

#

That's about all there is to format strings. Now, if RPM's standard output doesn't give you what you
want, you have no reason to complain. Just --queryformat it!

In Case You Were Wondering…

What's that? You say you don't know what tags are available? You can use RPM's --querytags op-
tion. When used as the only option (ie, rpm --querytags), it produces a list of available tags. It
should be noted that RPM displays the complete tag name. For instance, RPMTAG_ARCH is the
complete name, yet you'll only need to use ARCH in your format string. Here's a partial example of
the --querytags option in action:

Getting Information About Packages

79

rpm --querytags

RPMTAG_NAME
RPMTAG_VERSION
RPMTAG_RELEASE
…
RPMTAG_VERIFYSCRIPT

#

Be forewarned: the full list is quite lengthy. At the time this book was written, there were over 70
tags! You'll notice that each tag is printed in uppercase, and is preceded with RPMTAG_. If we
were to use that last tag, RPMTAG_VERIFYSCRIPT, in a format string, it could be specified in
any of the following ways:

%{RPMTAG_VERIFYSCRIPT}

%{RPMTAG_VerifyScript}

%{RPMTAG_VeRiFyScRiPt}

%{VERIFYSCRIPT}

%{VerifyScript}

%{VeRiFyScRiPt}

The only hard-and-fast rule regarding tags is that if you include the RPMTAG_ prefix, it must be all
uppercase. The fourth example above shows the traditional way of specifying a tag — prefix omit-
ted, all uppercase. The choice, however, is yours.

One other thing to keep in mind is that not every package will have every type of tagged information
available. In cases where the requested information is not available, RPM will display (none) or
(unknown). There are also a few tags that, for one reason or another, will not produce useful out-
put when using in a format string. For a comprehensive list of queryformat tags, please see Ap-
pendix D, Available Tags For --queryformat.

Getting a lot more information with -vv
Sometimes it's necessary to have even more information than we can get with -v. By adding another
v, we can start to see more of RPM's inner workings:

rpm -qvv rpm

D: opening database in //var/lib/rpm/
D: querying record number 2341208
rpm-2.3-1

#

The lines starting with D: have been added by using -vv. We can see where the RPM database is
located and what record number contains information on the rpm-2.3-1 package. Following that
is the usual output.

In the vast majority of cases, it will not be necessary to use -vv. It is normally used by software en-

Getting Information About Packages

80

6 For more information on rpmrc file entries, see Appendix B, The rpmrc File.

gineers working on RPM itself, and the output can change without notice. However, it's a handy
way to gain insights into RPM's inner workings.

--root <path>: Use <path> As An Alternate Root
Adding --root <path> to a query command forces RPM to assume that the directory specified by
<path> is actually the "root" directory. In addition, RPM expects its database to reside in the dir-
ectory specified by the dbpath rpmrc file entry, relative to <path>. 6

Normally this option is only used during an initial system install, or when a system has been booted
off a "rescue disk", and some packages need to be re-installed in order to restore normal operation.

--rcfile <rcfile>: Use <rcfile> As An Alternate rpm-
rc File

The --rcfile option is used to specify a file containing default settings for RPM. Normally, this op-
tion is not needed. By default, RPM uses /etc/rpmrc and a file named .rpmrc, located in your
login directory.

This option would be used if there was a need to switch between several sets of RPM options. Soft-
ware developer and package builders will be the people using --rcfile. For more information on rp-
mrc files, see Appendix B, The rpmrc File.

--dbpath <path>: Use <path> To Find RPM Database
In order for RPM to do its handiwork, it needs access to an RPM database. Normally, this database
exists in the directory specified by the rpmrc file entry, dbpath. By default, dbpath is set to /
var/lib/rpm.

Although the dbpath entry can be modified in the appropriate rpmrc file, the --dbpath option is
probably a better choice when the database path needs to be changed temporarily. An example of a
time the --dbpath option would come in handy is when it's necessary to examine an RPM database
copied from another system. Granted, it's not a common occurrence, but it's difficult to handle any
other way.

A Few Handy Queries
Below are some examples of situations you might find yourself in, and ways you can use RPM to
get the information you need. Keep in mind that these are just examples. Don't be afraid to experi-
ment!

Finding Config Files Based on a Program Name
You're setting up a new system, and you'd like to implement some system-wide aliases for people
using the Bourne Again SHell, bash. The problem is you just can't remember the name of the sys-
tem-wide initialization file used by bash, or where it resides:

rpm -qcf /bin/bash

/etc/bashrc

#

Rather than spending time trying to hunt down the file, RPM finds it for you in seconds.

Getting Information About Packages

81

Learning More About an Uninstalled Package
Practically any option can be combined with -qp to extract information from a .rpm file. Let's say
you have an unknown .rpm file, and you'd like to know a bit more before installing it:

rpm -qpil foo.bar

Name : rpm Distribution: Red Hat Linux Vanderbilt
Version : 2.3 Vendor: Red Hat Software
Release : 1 Build Date: Tue Dec 24 09:07:59 1996
Install date: (none) Build Host: porky.redhat.com
Group : Utilities/System Source RPM: rpm-2.3-1.src.rpm
Size : 631157
Summary : Red Hat Package Manager
Description :
RPM is a powerful package manager, which can be used to build, install,
query, verify, update, and uninstall individual software packages. A
package consists of an archive of files, and package information,
including name, version, and description.
/bin/rpm
/usr/bin/find-provides
/usr/bin/find-requires
/usr/bin/gendiff
/usr/bin/rpm2cpio
/usr/doc/rpm-2.3-1
…
/usr/src/redhat/SOURCES
/usr/src/redhat/SPECS
/usr/src/redhat/SRPMS

#

By displaying the package information, we know that we have a package file containing RPM ver-
sion 2.3. We can then peruse the file list, and see exactly what it would install before installing it.

Finding Documentation for a Specific Package
Picking on bash some more, you realize that your knowledge of the software is lacking. You'd like
to see when it was installed on your system, and what documentation is available for it:

rpm -qid bash

Name :bash Distribution: Red Hat Linux (Picasso)
Version :1.14.6 Vendor: Red Hat Software
Release :2 Build Date: Sun Feb 25 13:59:26 1996
Install date:Mon May 13 12:47:22 1996 Build Host: porky.redhat.com
Group :Shells Source RPM: bash-1.14.6-2.src.rpm
Size :486557
Description :GNU Bourne Again Shell (bash)
/usr/doc/bash-1.14.6-2
/usr/doc/bash-1.14.6-2/NEWS
/usr/doc/bash-1.14.6-2/README
/usr/doc/bash-1.14.6-2/RELEASE
/usr/info/bash.info.gz
/usr/man/man1/bash.1

#

You never realized that there could be so much documentation for a shell!

Finding Similar Packages

Getting Information About Packages

82

7 Did you see this example and say to yourself, "Hey, they could've used the -g option to query for that group directly"? If you did, you've
been paying attention. This is a more general way of searching the RPM database for information: we just happened to search by group in
this example.

Looking at bash's information, we see that it belongs to the group "Shells". You're not sure what
other shell packages are installed on your system. If you can find other packages in the "Shells"
group, you'll have found the other installed shells:

rpm -qa --queryformat '%10{NAME} %20{GROUP}\n' | grep -i shells

ash Shells
bash Shells
csh Shells
mc Shells

tcsh Shells

#

Now you can query each of these packages, and learn more about them, too. 7

Finding Recently Installed Packages, Part I
You remember installing a new package a few days ago. All you know for certain is that the pack-
age installed a new command in the /bin directory. Let's try to find the package:

find /bin -type f -mtime -14 | rpm -qF

rpm-2.3-1

#

Looks like RPM version 2.3 was installed sometime in the last two weeks.

Finding Recently Installed Packages, Part II
Another way to see which packages were recently installed is to use the --queryformat option:

rpm -qa --queryformat '%{installtime} %{name}-%{version}-%{release} %{installtime:date}\n' | sort -nr +1 | sed -e 's/^[^]* //'

rpm-devel-2.3-1 Thu Dec 26 23:02:05 1996
rpm-2.3-1 Thu Dec 26 23:01:51 1996
pgp-2.6.3usa-2 Tue Oct 22 19:39:09 1996
…
pamconfig-0.50-5 Tue Oct 15 17:23:22 1996
setup-1.5-1 Tue Oct 15 17:23:21 1996

#

By having RPM include the installation time in numeric form, it was simple to sort the packages and
then use sed to remove the user-unfriendly numeric time.

Finding the Largest Installed Packages
Let's say that you're running low on disk space, and you'd like to see what packages you have in-
stalled, along with the amount of space each package takes up. You'd also like to see the largest
packages first, so you can get back as much disk space as possible:

rpm -qa --queryformat '%{name}-%{version}-%{release} %{size}\n' | sort -nr +1

Getting Information About Packages

83

kernel-source-2.0.18-5 20608472
tetex-0.3.4-3 19757371
emacs-el-19.34-1 12259914
…
rootfiles-1.3-1 3494
mkinitrd-1.0-1 1898
redhat-release-4.0-1 22

#

If you don't build custom kernels, or use TeX, it's easy to see how much space could be reclaimed
by removing those packages.

Getting Information About Packages

84

Chapter 6. Using RPM to Verify
Installed Packages

Table 6.1. rpm -V Command Syntax

rpm -V or (--verify, or -y) options

Package Selection Options Page

pkg1 … pkgN Verify named package(s) the section called “ The Package
Label — Verify an Installed Pack-
age Against the RPM Database ”

-p <file> Verify against package file
<file>

the section called “ -p <file> —
Verify Against a Specific Package
File ”

-f <file> Verify package owning <file> the section called “ -f <file> —
Verify the Package Owning
<file> Against the RPM Data-
base ”

-a Verify all installed packages the section called “ -a — Verify All
Installed Packages Against the RPM
Database ”

-g <group> Verify packages belonging to group
<group>

the section called “ -g <group> —
Verify Packages Belonging To
<group> ”

Verify-specific Options Page

--noscripts Do not execute verification script the section called “ --noscripts: Do
Not Execute Verification Script ”

--nodeps Do not verify dependencies the section called “ --nodeps: Do
Not Check Dependencies During
Verification ”

--nofiles Do not verify file attributes the section called “ --nofiles: Do
Not Verify File Attributes ”

General Options Page

-v Display additional information the section called “-v — Display
Additional Information”

-vv Display debugging information the section called “-vv — Display
Debugging Information”

--root <path> Set alternate root to <path> the section called “ --root <path>:
Set Alternate Root to <path> ”

--rcfile <rcfile> Set alternate rpmrc file to
<rcfile>

the section called “ --rcfile
<rcfile>: Set Alternate rpmrc
file to <rcfile> ”

--dbpath <path> Use <path> to find the RPM data-
base

the section called “ --dbpath
<path>: Use <path> To Find
RPM Database ”

rpm -V — What Does it Do?
From time to time, it's necessary to make sure that everything on your system is "OK". Are you sure
the packages you've installed are still configured properly? Have there been any changes made that
you don't know about? Did you mistakenly start a recursive delete in /usr and now have to assess

85

1 Actually, the price is fairly low. For a completely RPM-based Linux distribution, it would be unusual to have a database over 5MB in size.

the damage?

RPM can help. It can alert you to changes made to any of the files installed by RPM. Also, if a
package requires capabilities provided by another package, it can make sure the other package is in-
stalled, too.

The command rpm -V (The options -y and --verify are equivalent) verifies an installed package.
Before we see how this is done, let's take a step back and look at the big picture.

Every time a package is installed, upgraded, or erased, the changes are logged in RPM's database.
It's necessary for RPM to keep track of this information; otherwise it wouldn't be able to perform
these operations correctly. You can think of the RPM database (and the disk space it consumes) as
being the "price of admission" for the easy package management that RPM provides. 1

The RPM database reflects the configuration of the system on which it resides. When RPM accesses
the database to see how files should be manipulated during an install, upgrade, or erase, it is using
the database as a mirror of the system's configuration.

However, we can also use the system configuration as a mirror of the RPM database. What does this
"backward" view give us? What purpose would be served?

The purpose would be to see if the system configuration accurately reflects the contents of the RPM
database. If the system configuration doesn't match the database, then we can reach one of two con-
clusions:

1. The RPM database has become corrupt. The system configuration is unchanged.

2. The RPM database is intact. The system configuration has changed.

While it would be foolish to state that an RPM database has never become corrupt, it is a suffi-
ciently rare occurrence that the second conclusion is much more likely. So RPM gives us a powerful
verification tool, essentially for free.

What Does it Verify?
It would be handy if RPM did nothing more than verify that every file installed by a package actu-
ally exists on your system. In reality, RPM does much more. It makes sure that if a package depends
on other packages to provide certain capabilities, the necessary packages are, in fact, installed. If the
package builder created one, RPM will also run a special verification script that can verify aspects
of the package's installation that RPM cannot.

Finally, every file installed by RPM is examined. No less than nine different attributes of each file
can be checked. Here is the list of attributes:

• Owner

• Group

• Mode

• MD5 Checksum

• Size

• Major Number

• Minor Number

• Symbolic Link String

Using RPM to Verify Installed Pack-
ages

86

2 From a strictly theoretical standpoint, this is not entirely true. Using the lingo of cryptologists, it is believed to be "computationally infeas-
ible" to find two messages that produce the same MD5 checksum.

• Modification Time

Let's take a look at each of these attributes and why they are good things to check:

File Ownership

Most operating systems today keep track of each file's creator. This is done primarily for resource
accounting. Linux and UNIX also use file ownership to help determine access rights to the file. In
addition, some files, when executed by a user, can temporarily change the user's ID, normally to a
more privileged ID. Therefore, any change of file ownership may have far reaching effects on data
security and system availability.

File Group

In a similar manner to file ownership, a "group" specification is attached to each file. Primarily used
for determining access rights, a file's group specification can also become a user's group ID, should
that user execute the file's contents. Therefore, any changes in a file's group specification are import-
ant, and should be monitored.

File Mode

Encompassing the file's "permissions", the mode is a set of bits that specifies permitted access for
the file's owner, group members, and everyone else. Even more important are two additional bits
that determine whether a user's group or user ID should be changed if they execute the program con-
tained in the file. Since these little bombshells can let any user become root for the duration of the
program, it pays to be extra careful with a file's permissions.

MD5 Checksum

The MD5 checksum of a file is simply a 128-bit number that is mathematically derived from the
contents of the file. The MD5 algorithm was designed by Ron Rivest, the "R" in the popular RSA
public-key encryption algorithm. The "MD" in "MD5" stands for Message Digest, which is a pretty
accurate description of what it does.

Unlike literary digests, an MD5 checksum conveys no information about the contents of the original
file. However, it possesses one unique trait:

• Any change to the file, no matter how small, results in a change to the MD5 checksum. 2

RPM creates MD5 checksums of all files it manipulates, and stores them in its database. For all in-
tents and purposes, if one of these files is changed, the MD5 checksum will change, and RPM will
detect it.

File Size

As if the use of MD5 isn't enough, RPM also keeps track of file sizes. A difference of even one byte
more or less will not go unnoticed.

Major Number

Device character and block files possess a major number. The major number is used to communicate
information to the device driver associated with the special file. For instance, under Linux the spe-
cial files for SCSI disk drives should have a major number of 8, while the major number for an IDE
disk drive's special file would be 3. As you can imagine, any change to a file's major number can
have disastrous effects, and is tracked by RPM.

Minor Number

Using RPM to Verify Installed Pack-
ages

87

A file's minor number is similar in concept to the major number, but conveys different information
to the device driver. In the case of disk drives, this information can consist of a unit identifier.
Should the minor number change, RPM will detect it.

Symbolic Link

If the file in question is really a symbolic link, the text string containing the name of the linked-to
file is checked.

Modification Time

Most operating systems keep track of the date and time that a file was last modified. RPM uses this
to its advantage by keeping modification times in its database.

When Verification Fails — rpm -V Output
When verifying a package, RPM produces output only if there is a verification failure. When a file
fails verification, the format of the output is a bit cryptic, but it packs all the information you need
into one line per file. Here is the format:

SM5DLUGT c <file>

Where:

• S is the file size.

• M is the file's mode.

• 5 is the MD5 checksum of the file.

• D is the file's major and minor numbers.

• L is the file's symbolic link contents.

• U is owner of the file.

• G is the file's group.

• T is the modification time of the file.

• c appears only if the file is a configuration file. This is handy for quickly identifying config
files, as they are very likely to change, and therefore, very unlikely to verify successfully.

• <file> is the file that failed verification. The complete path is listed to make it easy to find.

It's unlikely that every file attribute will fail to verify, so each of the eight attribute flags will only
appear if there is a problem. Otherwise, a "." will be printed in that flag's place. Let's look at an ex-
ample or two:

.M5....T /usr/X11R6/lib/X11/fonts/misc/fonts.dir

Using RPM to Verify Installed Pack-
ages

88

In this case, the mode, MD5 checksum, and modification time for the specified file have failed to
verify. The file is not a config file (Note the absence of a "c" between the attribute list and the file-
name).

S.5....T c /etc/passwd

Here, the size, checksum, and modification time of the system password file have all changed. The
"c" indicates that this is a config file.

missing /var/spool/at/spool

This last example illustrates what RPM does when a file, that should be there, is missing entirely.

Other Verification Failure Messages
When rpm -V finds other problems, the output is a bit easier to understand:

rpm -V blather

Unsatisfied dependencies for blather-7.9-1: bother >= 3.1

#

It's pretty easy to see that the blather package requires at least version 3.1 of the bother pack-
age.

The output from a package's verification script is a bit harder to categorize, as the script's contents,
as well as its messages, are entirely up to the package builder.

Selecting What to Verify, and How
There are several ways to verify packages installed on your system. If you've taken a look at RPM's
query command, you'll find that many of them are similar. Let's start with the simplest method of
specifying packages — the package label.

The Package Label — Verify an Installed Package
Against the RPM Database

You can simply follow the rpm -V command with all or part of a package label. As with every other
RPM command that accepts package labels, you'll need to carefully specify each part of the label
you include. Keep in mind that package names are case-sensitive, so rpm -V PackageName and
rpm -V packagename are not the same. Let's verify the initscripts package:

rpm -V initscripts
#

Using RPM to Verify Installed Pack-
ages

89

While it looks like RPM didn't do anything, the following steps were performed:

• For every file in the package, RPM checked the nine file attributes that were discussed above.

• If the package was built with dependencies, the RPM database was searched to ensure the pack-
ages that satisfy those dependencies were installed.

• If the package was built with a verification script, that script was executed.

In our example, each of these steps was performed without error — the package verified success-
fully. Remember, with rpm -V you'll only see output if a package fails to verify.

-a — Verify All Installed Packages Against the RPM
Database

If you add -a to rpm -V, you can easily verify every installed package on your system. It might take
a while, but when it's done, you'll know exactly what's been changed on your system:

rpm -Va

.M5....T /usr/X11R6/lib/X11/fonts/misc/fonts.dir
missing /var/spool/at/.lockfile
missing /var/spool/at/spool
S.5....T /usr/lib/rhs/glint/icon.pyc
..5....T c /etc/inittab
..5..... /usr/bin/loadkeys

#

Don't be too surprised if rpm -Va turns up a surprising number of files that failed verification.
RPM's verification process is very strict! In many cases, the changes flagged don't indicate problems
— they are only an indication of your system's configuration being different than what the builders
of the installed packages had on their system. Also, some attributes change during normal system
operation. However, it would be wise to check into each verification failure, just to make sure.

-f <file> — Verify the Package Owning <file>
Against the RPM Database

Imagine this: you're hard at work when a program you've used a million times before suddenly stops
working. What do you do? Well, before using RPM, you probably tried to find other files associated
with that program and see if they had changed recently.

Now you can let RPM do at least part of that sleuthing for you. Simply direct RPM to verify the
package owning the ailing program:

% rpm -Vf /sbin/cardmgr

S.5....T c /etc/sysconfig/pcmcia

%

Hmmmm. Looks like a config file was recently changed.

This isn't to say that using RPM to verify a package will always get you out of trouble, but it's such
a quick step it should be one of the first things you try. Here's an example of rpm -Vf not working

Using RPM to Verify Installed Pack-
ages

90

out as well:

% rpm -Vf /etc/blunder

file /etc/blunder is not owned by any package

%

(Note that the issue surrounding RPM and symbolic links mentioned in the section called “A Tricky
Detail” also applies to rpm -Vf. Watch those symlinks!)

-p <file> — Verify Against a Specific Package File
Unlike the previous options to rpm -V, each of which verified one or more packages against RPM's
database, the -p option performs the same verification, but against a package file. Why on earth
would you want to do this when the RPM database is sitting there just waiting to be used?

Well, what if you didn't have an RPM database? While it isn't a common occurrence, power failures,
hardware problems, and inadvertent deletions (along with non-existent backups) can leave your sys-
tem "sans database". Then your system hiccups — what do you do now?

This is where a CD full of package files can be worth its weight in gold. Simply mount the CD and
verify to your heart's content:

rpm -Vp /mnt/cdrom/RedHat/RPMS/i386/adduser-1.1-1.i386.rpm
#

Whatever else might be wrong with this system, at least we can add new users. But what if you have
many packages to verify? It would be a very slow process doing it one package at a time. That's
where the next option comes in handy…

-g <group> — Verify Packages Belonging To <group>

When a package is built, the package builder must classify the package, grouping it with other pack-
ages that perform similar functions. RPM gives you the ability to verify installed packages based on
their groups. For example, there is a group known as Shells. This group consists of packages that
contain, strangely enough, shells. Let's verify the proper installation of every shell-related package
on the system:

rpm -Vg Shells

missing /etc/bashrc

#

One thing to keep in mind is that group specifications are case-sensitive. Issuing the command rpm
-Vg shells wouldn't verify many packages:

rpm -Vg shells

group shells does not contain any packages

#

Using RPM to Verify Installed Pack-
ages

91

--nodeps: Do Not Check Dependencies During Verific-
ation

When the --nodeps option is added to a verify command, RPM will bypass its dependency verifica-
tion processing. In this example, we've added the -vv option to so we can watch RPM at work:

rpm -Vvv rpm

D: opening database in //var/lib/rpm/
D: verifying record number 2341208
D: dependencies: looking for libz.so.1
D: dependencies: looking for libdb.so.2
D: dependencies: looking for libc.so.5

#

As we can see, there are three different capabilities that the rpm package requires:

• libz.so.1

• libdb.so.2

• libc.so.5

If we add the --nodeps option, the dependency verification of the three capabilities is no longer per-
formed:

rpm -Vvv --nodeps rpm

D: opening database in //var/lib/rpm/
D: verifying record number 2341208

#

The line D: verifying record number 2341208 indicates that RPM's normal file-based
verification proceeded normally.

--noscripts: Do Not Execute Verification Script
Adding the --noscripts option to a verify command prevents execution of the verification scripts of
each package being verified. In the following example, the package verification script is executed:

rpm -Vvv bother

D: opening database in //var/lib/rpm/
D: verifying record number 616728
D: verify script found - running from file /var/tmp/rpm-321.vscript
+ PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/X11R6/bin
+ export PATH
+ echo This is the bother 3.5 verification script
This is the bother 3.5 verification script

#

Using RPM to Verify Installed Pack-
ages

92

While the actual script is not very interesting, it did execute when the package was being verified. In
the next example, we'll use the --noscripts option to prevent its execution:

rpm -Vvv --noscripts bother

D: opening database in //var/lib/rpm/
D: verifying record number 616728

#

As expected, the output is identical to the prior example — minus the lines dealing with the verifica-
tion script, of course.

--nofiles: Do Not Verify File Attributes
The --nofiles option disables RPM's file-related verification processing. When this option is used,
only the verification script and dependency verification processing are performed. In this example,
the package has a file-related verification problem:

rpm -Vvv bash

D: opening database in //var/lib/rpm/
D: verifying record number 279448
D: dependencies: looking for libc.so.5
D: dependencies: looking for libtermcap.so.2
missing /etc/bashrc

#

When the --nofiles option is added, the missing file doesn't cause a message any more:

rpm -Vvv --nofiles bash

D: opening database in //var/lib/rpm/
D: verifying record number 279448
D: dependencies: looking for libc.so.5
D: dependencies: looking for libtermcap.so.2

#

This is not to say that the missing file problem is solved, just that no file verification was performed.

-v — Display Additional Information
Although RPM won't report an error with the command syntax if you include the -v option, you
won't see much in the way of additional output:

rpm -Vv bash
#

Even if there are verification errors, adding -v won't change the output:

Using RPM to Verify Installed Pack-
ages

93

3 Failure messages will always be displayed.

rpm -Vv apmd

S.5....T /etc/rc.d/init.d/apm
S.5....T /usr/X11R6/bin/xapm

#

The only time that the -v option will produce output is when the package being verified has a veri-
fication script. Any normal output from the script won't be displayed by RPM, when run without -v:
3

rpm -V bother
#

But when -v is added, the script's non-error-related output is displayed:

rpm -Vv bother

This is the bother 3.5 verification script

#

If you're looking for more insight into RPM's inner workings, you'll have to try the next option:

-vv — Display Debugging Information
Sometimes it's necessary to have even more information than we can get with -v. By adding another
v, that's just what we'll get:

rpm -Vvv rpm

D: opening database in //var/lib/rpm/
D: verifying record number 2341208
D: dependencies: looking for libz.so.1
D: dependencies: looking for libdb.so.2
D: dependencies: looking for libc.so.5

#

The lines starting with D: have been added by using -vv. We can see where the RPM database is
located and what record number contains information on the rpm-2.3-1 package. Following that
is the list of dependencies that the rpm package requires.

In the vast majority of cases, it will not be necessary to use -vv. It is normally used by software en-
gineers working on RPM itself, and the output can change without notice. However, it's a handy
way to gain insights into RPM.

--dbpath <path>: Use <path> To Find RPM Database
In order for RPM to do its handiwork, it needs access to an RPM database. Normally, this database
exists in the directory specified by the rpmrc file entry, dbpath. By default, dbpath is set to /
var/lib/rpm.

Using RPM to Verify Installed Pack-
ages

94

4 For more information on rpmrc file entries, see Appendix B, The rpmrc File.

Although the dbpath entry can be modified in the appropriate rpmrc file, the --dbpath option is
probably a better choice when the database path needs to be changed temporarily. An example of a
time the --dbpath option would come in handy is when it's necessary to examine an RPM database
copied from another system. Granted, it's not a common occurrence, but it's difficult to handle any
other way.

--root <path>: Set Alternate Root to <path>

Adding --root <path> to a verify command forces RPM to assume that the directory specified by
<path> is actually the "root" directory. In addition, RPM expects its database to reside in the dir-
ectory specified by the dbpath rpmrc file entry, relative to <path>. 4

Normally this option is only used during an initial system install, or when a system has been booted
off a "rescue disk", and some packages need to be re-installed in order to restore normal operation.

--rcfile <rcfile>: Set Alternate rpmrc file to
<rcfile>

The --rcfile option is used to specify a file containing default settings for RPM. Normally, this op-
tion is not needed. By default, RPM uses /etc/rpmrc and a file named .rpmrc, located in your
login directory.

This option would be used if there was a need to switch between several sets of RPM options. Soft-
ware developer and package builders will be the people using --rcfile. For more information on rp-
mrc files, see Appendix B, The rpmrc File.

We've Lied to You…
Not really; we just omitted a few details until you've had a chance to see rpm -V in action. Here are
the details:

RPM Controls What Gets Verified
Depending on the type of file being verified, RPM will not verify every possible attribute. Here is a
table showing the attributes checked for each of the different file types:

Table 6.2. Verification Versus File Types

File Type File Size Mode MD5
Check-
sum

Major
Number

Minor
Number

Symlink
String

Owner Group Modifica-
tion Time

Directory
File

- X - - - - X X -

Symbolic
Links

- X - - - X X X -

FIFO - X - - - - X X -

Devices - X - X X - X X -

Regular
Files

X X X - - - X X X

The Package Builder Can Also Control What Gets Verified

Using RPM to Verify Installed Pack-
ages

95

5 See the section called “The %verify Directive” for details on %verify

When a package builder creates a new package, they can control what attributes are to be verified on
a file-by-file basis. The reasons for excluding specific attributes from verification can be quite in-
volved, but here's an example just to give you the flavor:

When a person logs into a system, there are device files associated with that user's terminal session.
In order for the terminal device (called tty) to function properly, the owner and group of the device
must change to that of the person logging in. Therefore, if RPM were to verify the package that cre-
ated the tty device files, any ttys that were in use at the time would fail to verify. However, by us-
ing the %verify 5 directive, a package builder can save you from trivial verification failures.

Using RPM to Verify Installed Pack-
ages

96

Chapter 7. Using RPM to Verify
Package Files

Table 7.1. rpm -K Command Syntax

rpm -K (or --checksig) options file1.rpm … fileN.rpm

Parameters

file1.rpm … fileN.rpm One or more RPM package files (URLs OK)

Checksig-specific Options Page

--nopgp Do not verify PGP signatures the section called “ --nopgp — Do
Not Verify Any PGP Signatures ”

General Options Page

-v Display additional information the section called “-v — Display
Additional Information”

-vv Display debugging information the section called “-vv — Display
Debugging Information”

--rcfile <rcfile> Set alternate rpmrc file to
<rcfile>

the section called “ --rcfile
<rcfile>: Use <rcfile> As
An Alternate rpmrc File ”

rpm -K — What Does it Do?
One aspect of RPM is that you can get a package from the Internet, and easily install it. But what do
you know about that package file? Is the organization listed as being the "vendor" of the package
really the organization that built it? Did someone make unauthorized changes to it? Can you trust
that, if installed, it won't mail a copy of your password file to a system cracker?

Features built into RPM allow you to make sure that the package file you've just gotten won't cause
you problems once it's installed, whether the package was corrupted by line noise when you down-
loaded it, or something more sinister happened to it.

The command rpm -K (The option --checksig is equivalent) verifies a package file. Using this com-
mand, it is easy to make sure the file has not been changed in any way. rpm -K can also be used to
make sure that the package was actually built by the organization listed as being the package's
vendor. That's all very impressive, but how does it do that? Well, it just needs help from some
"Pretty Good" software.

Pretty Good Privacy: RPM's Assistant
The "Pretty Good" software we're referring to is known as "Pretty Good Privacy", or PGP. While all
the information on PGP could fill a book (or several), we've provided a quick introduction to help
you get started.

If PGP is new to you, a quick glance through Appendix G, An Introduction to PGP should get you
well on your way to understanding, building, and installing PGP. If, on the other hand, you've got
PGP already installed and have sent an encrypted message or two, you're probably more than ready
to continue with this chapter.

Configuring PGP for rpm -K
Once PGP is properly built and installed, the actual configuration for RPM is trivial. Here's what

97

1 For more information on rpmrc files, rpmrc file entries, and how to use them, please see Appendix B, The rpmrc File.

needs to be done:

• PGP must be in your path. If PGP's usage message doesn't come up when you enter pgp at your
shell prompt, you'll need to add PGP's directory to your path.

• PGP must be able to find the public keyring file that you want to use when checking package
file signatures. You can use two methods to direct PGP to the public keyring:

1. Set the PGPPATH environment variable to point to the directory containing the public
keyring file.

2. Set the pgp_path rpmrc file entry to point to the directory containing the public keyring
file. 1

Now we're ready.

Using rpm -K
After all the preliminaries with PGP, it's time to get down to business. First, we need to get the
package builder's public key and add it to the public keyring file used by RPM. You'll need to do
this once for each package builder whose packages you'll want to check. This is what you'll need to
do:

pgp -ka RPM-PGP-KEY ./pubring.pgp

Pretty Good Privacy(tm) 2.6.3a - Public-key encryption for the masses.
(c) 1990-96 Philip Zimmermann, Phil's Pretty Good Software. 1996-03-04
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. government.
Current time: 1996/06/01 22:50 GMT

Looking for new keys...
pub 1024/CBA29BF9 1996/02/20 Red Hat Software, Inc. <redhat@redhat.com>

Checking signatures...

Keyfile contains:
1 new key(s)

One or more of the new keys are not fully certified.

Do you want to certify any of these keys yourself (y/N)? n

Here we've added Red Hat's public key, since we're going to check some package files produced by
them. The file RPM-PGP-KEY contains the key. At the end, PGP asks us if we want to certify the
new key. We've answered "no" since it isn't necessary to certify keys to verify package files.

Next, we'll verify a package file:

rpm -K rpm-2.3-1.i386.rpm

rpm-2.3-1.i386.rpm: size pgp md5 OK

#

Using RPM to Verify Package Files

98

2 Red Hat Software's public key is also available from their website, at http://www.redhat.com/redhat/contact.html
[http://www.redhat.com/redhat/contact.html]. The RPM sources also contain the key, and are available from their FTP site at
ftp://ftp.redhat.com/pub/redhat/code/rpm [ftp://ftp.redhat.com/pub/redhat/code/rpm].

While the output might seem somewhat anti-climactic, we can now be nearly 100% certain this
package:

1. was produced by Red Hat.

2. is unchanged from their original copy.

The output from this command shows that there are actually three distinct features of the package
file that are checked by the -K option:

1. The size message indicates that the size of the packaged files has not changed.

2. The pgp message indicates that the digital signature contained in the package file is a valid
signature of the package file contents, and was produced by the organization that originally
signed the package.

3. The md5 message indicates that a checksum contained in the package file and calculated when
the package was built, matches a checksum calculated by RPM during verification. Because the
two checksums match, it is unlikely that the package has been modified.

The OK means that each of these tests were successful. If any had failed, the name would have been
printed in parentheses. A bit later in the chapter, we'll see what happens when there are verification
problems.

-v — Display Additional Information
Adding v to a verification command will produce more interesting output:

rpm -Kv rpm-2.3-1.i386.rpm

rpm-2.3-1.i386.rpm:
Header+Archive size OK: 278686 bytes
Good signature from user "Red Hat Software, Inc. <redhat@redhat.com>".
Signature made 1996/12/24 18:37 GMT using 1024-bit key, key ID CBA29BF9

WARNING: Because this public key is not certified with a trusted
signature, it is not known with high confidence that this public key
actually belongs to: "Red Hat Software, Inc. <redhat@redhat.com>".
MD5 sum OK: 8873682c5e036a307dee87d990e75349

#

With a bit of digging, we can see that each of the three tests was performed, and each passed. The
reason for that dire-sounding warning is that PGP is meant to operate without a central authority
managing key distribution. PGP certifies keys based on webs of trust. For example, if an acquaint-
ance of yours creates a public key, you can certify it by attaching your digital signature to it. Then
anyone that knows and trusts you can also trust your acquaintance's public key.

In this case, the key came directly from a mass-produced Red Hat Linux CDROM. If someone was
trying to masquerade as Red Hat then they have certainly gone through a lot of trouble to do so. In
this case, the lack of a certified public key is not a major problem, given the fact that the CDROM
came directly from the Red Hat offices. 2

Using RPM to Verify Package Files

99

http://www.redhat.com/redhat/contact.html
ftp://ftp.redhat.com/pub/redhat/code/rpm

When the Package is Not Signed
As mentioned earlier, not every package you'll run across is going to be signed. If this is the case,
here's what you'll see from RPM:

rpm -K bother-3.5-1.i386.rpm

bother-3.5-1.i386.rpm: size md5 OK

#

Note the lack of a pgp message. The size and md5 messages indicate that the package still has
size and checksum information that verified properly. In fact, all recently-produced package files
will have these verification measures built in automatically.

If you happen to run across an older unsigned package, you'll know it right away:

rpm -K apmd-2.4-1.i386.rpm

apmd-2.4-1.i386.rpm: No signature available

#

Older package files had only a PGP-based signature; if that was missing, there was nothing left to
verify.

When You Are Missing the Correct Public Key
If you happen to forget to add the right public key to RPM's keyring, you'll see the following re-
sponse:

rpm -K rpm-2.3-1.i386.rpm

rpm-2.3-1.i386.rpm: size (PGP) md5 OK (MISSING KEYS)

#

Here the PGP in parentheses indicates that there's a problem with the signature, and the message at
the end of the line (MISSING KEYS) shows what the problem is. Basically, RPM asked PGP to
verify the package against a key that PGP didn't have, and PGP complained.

When a Package Just Doesn't Verify
Eventually it's going to happen — you go to verify a package, and it fails. We'll look at an example
of a package that fails verification a bit later. Before we do that, let's make a package that won't veri-
fy, to demonstrate how sensitive RPM's verification is.

First, we made a copy of a signed package, rpm-2.3-1.i386.rpm, to be specific. We called the
copy rpm-2.3-1.i386-bogus.rpm. Next, using Emacs (in hexl-mode, for all you Emacs
buffs), we changed the first letter of the name of the system that built the original package. The file
rpm-2.3-1.i386-bogus.rpm is now truly bogus: it has been changed from the original file.

Although the change was a small one, it still showed up when the package file was queried. Here's a
listing from the original package:

Using RPM to Verify Package Files

100

rpm -qip rpm-2.3-1.i386.rpm

Name : rpm Distribution: Red Hat Linux Vanderbilt
Version : 2.3 Vendor: Red Hat Software
Release : 1 Build Date: Tue Dec 24 09:07:59 1996
Install date: (none) Build Host: porky.redhat.com
Group : Utilities/System Source RPM: rpm-2.3-1.src.rpm
Size : 631157
Summary : Red Hat Package Manager
Description :
RPM is a powerful package manager, which can be used to build, install,
query, verify, update, and uninstall individual software packages. A
package consists of an archive of files, and package information,
including name, version, and description.

#

And here's the same listing from the bogus package file:

rpm -qip rpm-2.3-1.i386-bogus.rpm

Name : rpm Distribution: Red Hat Linux Vanderbilt
Version : 2.3 Vendor: Red Hat Software
Release : 1 Build Date: Tue Dec 24 09:07:59 1996
Install date: (none) Build Host: qorky.redhat.com
Group : Utilities/System Source RPM: rpm-2.3-1.src.rpm
Size : 631157
Summary : Red Hat Package Manager
Description :
RPM is a powerful package manager, which can be used to build, install,
query, verify, update, and uninstall individual software packages. A
package consists of an archive of files, and package information,
including name, version, and description.

#

Notice that the build host name changed from porky.redhat.com to qorky.redhat.com.
Using the cmp utility to compare the two files, we find that the difference occurs at byte 1201,
which changed from "p" (octal 160), to "q" (octal 161):

cmp -cl rpm-2.3-1.i386.rpm rpm-2.3-1.i386-bogus.rpm

1201 160 p 161 q

#

People versed in octal numbers will note that only one bit has been changed in the entire file. That's
the smallest possible change you can make! Let's see how our bogus friend fares:

rpm -K rpm-2.3-1.i386-bogus.rpm

rpm-2.3-1.i386-bogus.rpm: size PGP MD5 NOT OK

#

Given that the command's output ends with NOT OK in big capital letters, it's obvious there's a

Using RPM to Verify Package Files

101

problem. Since the word size was printed in lowercase, the bogus package's size was OK, which
makes sense — we only changed the value of one bit without adding or subtracting anything else.

However, the PGP signature, printed in uppercase, didn't verify. Again, this makes sense, too. The
package that was signed by Red Hat has been changed. The fact that the package's MD5 checksum
also failed to verify provides further evidence that the bogus package is just that: bogus.

--nopgp — Do Not Verify Any PGP Signatures
Perhaps you want to be able to verify packages but, for one reason or another, you cannot use PGP.
Maybe you don't have a trustworthy source of the necessary public keys, or maybe it's illegal to pos-
sess encryption (like PGP) software in your country. Is it still possible to verify packages?

Certainly — in fact, we've already done it, in the section called “When You Are Missing the Correct
Public Key”. You lose the ability to verify the package's origins, as well as some level of confidence
in the package's integrity, but the size and MD5 checksums still give some measure of assurance as
to the package's state.

Of course, when PGP can't be used, the output from a verification always looks like something's
wrong:

rpm -K rpm-2.3-1.i386.rpm

rpm-2.3-1.i386.rpm: size (PGP) md5 OK (MISSING KEYS)

#

The --nopgp option directs RPM to ignore PGP entirely. If we use the --nopgp option on our ex-
ample above, we find that things look a whole lot better:

rpm -K --nopgp rpm-2.3-1.i386.rpm

rpm-2.3-1.i386.rpm: size md5 OK

#

-vv — Display Debugging Information
Nine times out of ten, you'll probably never have to use it, but if you're the curious type, the -vv op-
tion will give you insights into how RPM verifies packages. Here's an example:

rpm -Kvv rpm-2.3-1.i386.rpm

D: New Header signature
D: magic: 8e ad e8 01
D: got : 8e ad e8 01
D: Signature size: 236
D: Signature pad : 4
D: sigsize : 240
D: Header + Archive: 278686
D: expected size : 278686
rpm-2.3-1.i386.rpm:
Header+Archive size OK: 278686 bytes
Good signature from user "Red Hat Software, Inc. <redhat@redhat.com>".
Signature made 1996/12/24 18:37 GMT using 1024-bit key, key ID CBA29BF9

WARNING: Because this public key is not certified with a trusted
signature, it is not known with high confidence that this public key
actually belongs to: "Red Hat Software, Inc. <redhat@redhat.com>".

Using RPM to Verify Package Files

102

MD5 sum OK: 8873682c5e036a307dee87d990e75349

#

The lines starting with D: represent extra output produced by the -vv option. This output is nor-
mally used by software developers in the course of adding new features to RPM and is subject to
change, but there's no law against looking at it.

Briefly, the output shows that RPM has detected a new-style signature block, containing size, MD5
checksum, and PGP signature information. The size of the signature, the size of the package file's
header and archive sections, and the expected size of those sections are all displayed.

--rcfile <rcfile>: Use <rcfile> As An Alternate rpm-
rc File

The --rcfile option is used to specify a file containing default settings for RPM. Normally, this op-
tion is not needed. By default, RPM uses /etc/rpmrc and a file named .rpmrc located in your
login directory.

This option would be used if there was a need to switch between several sets of RPM defaults. Soft-
ware developers and package builders will normally be the only people using the --rcfile option. For
more information on rpmrc files, see Appendix B, The rpmrc File.

Using RPM to Verify Package Files

103

Chapter 8. Miscellanea
As with any other large, complex subject, there are always some leftovers — things that just don't
seem to fit in any one category. RPM is no exception. This chapter covers those aspects of RPM that
can only be called "miscellanea"…

Other RPM Options
The following options are not normally used on a day to day basis. However, some of them can be
quite important when the need arises. One such option is --rebuilddb.

--rebuilddb — Rebuild RPM database
We all hope the day never comes, and for many of us, it never does. But still, there is a chance that
one day, while you're busy using RPM to install or upgrade a package, you'll see this message:

free list corrupt (42)- contact rpm-list@redhat.com

Once this happens, you'll find there's very little that you can do, RPM-wise. However, before you
fire off an e-mail to the RPM mailing list, you might try the --rebuilddb option. The format of the
command is simple:

rpm --rebuilddb

The command produces no output, either. After a few minutes, it completes with nary a peep. Here's
an example of --rebuilddb being used on an RPM database that wasn't corrupt. First, let's look at
the files that comprise the database:

cd /var/lib/rpm
ls

total 3534
-rw-r--r-- 1 root root 1351680 Oct 17 10:35 fileindex.rpm
-rw-r--r-- 1 root root 16384 Oct 17 10:35 groupindex.rpm
-rw-r--r-- 1 root root 16384 Oct 17 10:35 nameindex.rpm
-rw-r--r-- 1 root root 2342536 Oct 17 10:35 packages.rpm
-rw-r--r-- 1 root root 16384 Oct 17 10:35 providesindex.rpm
-rw-r--r-- 1 root root 16384 Oct 17 10:35 requiredby.rpm

#

Then, we issue the command:

rpm --rebuilddb
#

After a few minutes, the command completes, and we take a look at the files again:

104

ls

total 3531
-rw-r--r-- 1 root root 1351680 Oct 17 20:50 fileindex.rpm
-rw-r--r-- 1 root root 16384 Oct 17 20:50 groupindex.rpm
-rw-r--r-- 1 root root 16384 Oct 17 20:50 nameindex.rpm
-rw-r--r-- 1 root root 2339080 Oct 17 20:50 packages.rpm
-rw-r--r-- 1 root root 16384 Oct 17 20:50 providesindex.rpm
-rw-r--r-- 1 root root 16384 Oct 17 20:50 requiredby.rpm

#

You'll note that packages.rpm decreased in size. This is due to a side-effect of the --rebuilddb
option — While it is going through the database, it is getting rid of unused portions of the database.
Our example was performed on a newly installed system where only one or two packages had been
upgraded, so the reduction in size was small. For a system that has been through a complete up-
grade, the difference would be more dramatic.

Does this mean that you should rebuild the database every once in a while? Not really. Since RPM
eventually will make use of the holes, there's no major advantage to regular rebuilds. However,
when an RPM-based system has undergone a major upgrade, it certainly wouldn't hurt to spend a
few minutes using --rebuilddb to clean things up.

--initdb — Create a New RPM Database
If you are already using RPM, the --initdb option is one you'll probably never have to use. The -
-initdb option is used to create a new RPM database. That's why you'll probably not need it if you're
already using RPM — you already have an RPM database.

It might seem that the --initdb option would be dangerous. After all, won't it trash your current data-
base if you mistakenly use it? Fortunately, the answer is no. If there is an RPM database in place
already, it's still perfectly safe to use the option, even though it won't accomplish much. As an ex-
ample, here's a listing of the files that make up the RPM database on a Red Hat Linux system:

ls /var/lib/rpm

total 3559
-rw-r--r-- 1 root root 16384 Jan 8 22:10 conflictsindex.rpm
-rw-r--r-- 1 root root 1351680 Jan 8 22:10 fileindex.rpm
-rw-r--r-- 1 root root 16384 Jan 8 22:10 groupindex.rpm
-rw-r--r-- 1 root root 16384 Jan 8 22:10 nameindex.rpm
-rw-r--r-- 1 root root 2349640 Jan 8 22:10 packages.rpm
-rw-r--r-- 1 root root 16384 Jan 8 22:10 providesindex.rpm
-rw-r--r-- 1 root root 16384 Jan 8 22:10 requiredby.rpm

#

Next, let's use the --initdb option, just to see what it does to this database:

rpm --initdb
ls /var/lib/rpm

total 3559
-rw-r--r-- 1 root root 16384 Jan 8 22:10 conflictsindex.rpm
-rw-r--r-- 1 root root 1351680 Jan 8 22:10 fileindex.rpm
-rw-r--r-- 1 root root 16384 Jan 8 22:10 groupindex.rpm
-rw-r--r-- 1 root root 16384 Jan 8 22:10 nameindex.rpm
-rw-r--r-- 1 root root 2349640 Jan 8 22:10 packages.rpm
-rw-r--r-- 1 root root 16384 Jan 8 22:10 providesindex.rpm

Miscellanea

105

-rw-r--r-- 1 root root 16384 Jan 8 22:10 requiredby.rpm

#

Since an RPM database existed already, the --initdb option did no harm to it — there was no change
to the database files.

The only other option that can be used with --initdb is --dbpath. This permits the easy creation of a
new RPM database in the directory specified with the --dbpath option.

--quiet — Produce as little output as possible
Adding the --quiet option to any RPM command directs RPM to produce as little output as possible.
For example, RPM's build command (the subject of the second half of this book) normally produces
reams of output; by adding the --quiet option, this is all you'll see:

rpmbuild -ba --quiet bother-3.5.spec

* Package: bother
1 block
3 blocks

#

The --quiet option can silence even the mighty -vv option:

rpm -Uvv --quiet eject-1.2-2.i386.rpm
#

--help — Display a help message
RPM includes a concise built-in help message for those times when you need a reminder about a
particular command. Normally you'll want to use the --help option by itself, though you might want
to pipe the output through a pager such as less, since the output is more than one screen long:

rpm --help|less

RPM version 2.3
Copyright (C) 1995 - Red Hat Software
This may be freely redistributed under the terms of the GNU Public License

usage:
--help - print this message
--version - print the version of rpm being used
all modes support the following arguments:

--rcfile <file> - use <file> instead of /etc/rpmrc and $HOME/.rpmrc
-v - be a little more verbose
-vv - be incredibly verbose (for debugging)

-q - query mode
--root <dir> - use <dir> as the top level directory
--dbpath <dir> - use <dir> as the directory for the database
--queryformat <s> - use s as the header format (implies -i)

install, upgrade and query (with -p) allow ftp URL's to be used in place
of file names as well as the following options:

--ftpproxy <host> - hostname or IP of ftp proxy

--ftpport <port> - port number of ftp server (or proxy)

Miscellanea

106

This is just the first screen of RPM's help command. To see the rest, give the command a try. Prac-
tically everything there is to know about RPM is present in the --help output. It's a bit too concise to
learn RPM from, but it's enough to refresh your memory when the syntax of a particular option es-
capes you.

--version — Display the current RPM version
If you're not sure what version of RPM is presently installed on your system, the easiest way to find
out is to ask RPM itself using the --version option:

rpm --version

RPM version 2.3

#

Using rpm2cpio
From time to time, you might find it necessary to extract one or more files from a package file. One
way to do this would be to:

• Install the package

• Make a copy of the file(s) you need

• Erase the package

An easier way would be to use rpm2cpio.

rpm2cpio — What does it do?
As the name implies, rpm2cpio takes an RPM package file and converts it to a cpio archive. Be-
cause it's written to be used primarily as a filter, there's not much to be specified. rpm2cpio takes
only only one argument, and even that's optional!

The optional argument is the name of the package file to be converted. If there is no filename spe-
cified on the command line, rpm2cpio will simply read from standard input and convert that to a
cpio archive. Let's give it a try:

rpm2cpio logrotate-1.0-1.i386.rpm

0707020001a86a000081a4000000000000000000000001313118bb000002c200000008000
000030000000000000000000000190000e73eusr/man/man8/logrotate.8." logrotate
- log fi
le rotator
.TH rpm 8 "28 November 1995" "Red Hat Software" "Red Hat Linux"
.SH NAME

(We've just shown the first few lines of output.)

What on earth is all that stuff? Remember, rpm2cpio is written as a filter. It writes the cpio archive
contained in the package file to standard output, which, if you've not redirected it somehow, is your

Miscellanea

107

screen. Here's a more reasonable example:

rpm2cpio logrotate-1.0-1.i386.rpm > blah.cpio
file blah.cpio

blah.cpio: ASCII cpio archive (SVR4 with CRC)

#

Here we've directed rpm2cpio to convert the logrotate package file. We've also redirected
rpm2cpio's output to a file called blah.cpio. Next, using the file command, we find that the res-
ulting file is indeed a true-blue cpio archive file. The following command is entirely equivalent to
the one above and shows rpm2cpio's ability to read the package file from its standard input:

cat logrotate-1.0-1.i386.rpm | rpm2cpio > blah.cpio
#

A more real-world example — Listing the files in a
package file

While there's nothing wrong with using rpm2cpio to actually create a cpio archive file, it's takes a
few more steps and uses a bit more disk space than is strictly necessary. A somewhat cleaner ap-
proach would be to pipe rpm2cpio's output directly into cpio:

rpm2cpio logrotate-1.0-1.i386.rpm | cpio -t

usr/man/man8/logrotate.8
usr/sbin/logrotate
14 blocks

#

In this example, we used the -t option to direct cpio to produce a "table of contents" of the archive
created by rpm2cpio. This can make it much easier to get the right filename and path when you
want to extract a file.

Extracting one or more files from a package file
Continuing the example above, let's extract the man page from the logrotate package. In the ta-
ble of contents, we see that the full path is usr/man/man8/logrotate.8. All we need to do is
to use the filename and path as shown below:

rpm2cpio logrotate-1.0-1.i386.rpm |cpio -ivd usr/man/man8/logrotate.8

usr/man/man8/logrotate.8
14 blocks

#

In this case, the cpio options -i, -v, and -d direct cpio to:

• Extract one or more files from an archive.

Miscellanea

108

1 Note that the size displayed by cpio is the size of the cpio archive and not the package file.

• Display the names of any files processed, along with the size of the archive file, in 512-byte
blocks. 1

• Create any directories that precede the filename specified in the cpio command.

So where did the file end up? The last option (-d) to cpio provides a hint. Let's take a look:

ls -al

total 5
-rw-rw-r-- 1 root root 3918 May 30 11:02 logrotate-1.0-1.i386.rpm
drwx------ 3 root root 1024 Jul 14 12:42 usr

cd usr
ls -al

total 1
drwx------ 3 root root 1024 Jul 14 12:42 man

cd man
ls -al

total 1
drwx------ 2 root root 1024 Jul 14 12:42 man8

cd man8
ls -al

total 1
-rw-r--r-- 1 root root 706 Jul 14 12:42 logrotate.8

cat logrotate.8

.\" logrotate - log file rotator

.TH rpm 8 "28 November 1995" "Red Hat Software" "Red Hat Linux"

.SH NAME
logrotate \- log file rotator
.SH SYNOPSIS
\fBlogrotate\fP [configfiles]
.SH DESCRIPTION
\fBlogrotate\fP is a tool to prevent log files from growing without
…

#

Since the current directory didn't have a usr/man/man8/ path in it, the -d option caused cpio to
create all the directories leading up to the logrotate.8 file in the current directory. Based on
this, it's probably safest to use cpio outside the normal system directories unless you're comfortable
with cpio, and you know what you're doing!

Source Package Files and How To Use Them
One day, you may run across a package file with a name similar to the following:

etcskel-1.0-3.src.rpm

Notice the src. Is that a new kind of computer? If you use RPM on an Intel-based computer, you'd

Miscellanea

109

normally expect to find i386 there. Maybe someone messed up the name of the file. Well, we
know that the file command can display information about a package file, even if the filename has
been changed. We've used it before to figure out what package a file contains:

file foo.bar

foo.bar: RPM v2 bin i386 eject-1.2-2

#

In this example, foo.bar is an RPM version 2 file, containing an executable package — hence,
the "bin" — built for Intel processors — the "i386". The package is eject version 1.2, release 2.

Let's try the file command on this mystery file and see what we can find out about it:

file etcskel-1.0-3.src.rpm

etcskel-1.0-3.src.rpm: RPM v2 src i386 etcskel-1.0-3

#

Well, it's a package file all right — for version 1.0, release 3 of the etcskel package. It's in RPM
version 2 format, and built for Intel-based systems. But what does the "src" mean?

A gentle introduction to source code
This package file contains not the executable, or "binary", files that a normal package contains, but
rather the "source" files required to create those binaries. When programmers create a new program,
they write the instructions, often called "code", in one or more files. The source code is then com-
piled into a binary that can be executed by the computer.

As part of the process of building package files (a process we cover in great detail in the second half
of this book), two types of package files are created:

1. The binary, or executable, package file

2. The source package file

The source package contains everything needed to recreate not only the programs and associated
files that are contained in the binary package file, but the binary and source package files them-
selves.

Do you really need more information than this?
The following discussion is going to get rather technical. Unless you're the type of person who likes
to take other people's code and modify it, chances are you won't need much more information than
this. But if you're still interested, let's explore further.

So what can I do with it?
In the case of source package files, one of the things that can be done with them is that they can be
installed. Let's try an install of a source package:

rpm -i cdp-0.33-3.src.rpm
#

Miscellanea

110

Well that doesn't tell us very much and, take our word for it, adding -v doesn't improve the situation
appreciably. Let's haul out the big guns and try -vv:

rpm -ivv cdp-0.33-3.src.rpm

D: installing cdp-0.33-3.src.rpm
Installing cdp-0.33-3.src.rpm
D: package is a source package major = 2
D: installing a source package
D: sources in: ///usr/src/redhat/SOURCES
D: spec file in: ///usr/src/redhat/SPECS
D: file "cdp-0.33-cdplay.patch" complete
D: file "cdp-0.33-fsstnd.patch" complete
D: file "cdp-0.33.spec" complete
D: file "cdp-0.33.tgz" complete
D: renaming ///usr/src/redhat/SOURCES/cdp-0.33.spec to ///usr/src/redhat/SPECS/cdp-0.33.spec

#

What does this output tell us? Well, RPM recognizes that the file is a source package. It mentions
that sources (we know what they are) are in /usr/src/redhat/SOURCES. Let's take a look:

ls -al /usr/src/redhat/SOURCES/

-rw-rw-r-- 1 root root 364 Apr 24 22:35 cdp-0.33-cdplay.patch
-rw-r--r-- 1 root root 916 Jan 8 12:07 cdp-0.33-fsstnd.patch
-rw-r--r-- 1 root root 148916 Nov 10 1995 cdp-0.33.tgz

#

There are some files that seem to be related to cdp there. The two files ending with ".patch" are
patches to the source. RPM permits patches to be processed when building binary packages. The
patches are bundled along with the original, unmodified sources in the source package.

The last file is a gzipped tar file. If you've gotten software off the Internet, you're probably familiar
with tar files, gzipped or not. If we look inside the file, we should see all the usual kinds of things:
README files, a Makefile or two, and some source code:

tar ztf cdp-0.33.tgz

cdp-0.33/COPYING
cdp-0.33/ChangeLog
cdp-0.33/INSTALL
cdp-0.33/Makefile
cdp-0.33/README
cdp-0.33/cdp
cdp-0.33/cdp-0.33.lsm
cdp-0.33/cdp.1
cdp-0.33/cdp.1.Z
cdp-0.33/cdp.c
cdp-0.33/cdp.h

#

There's more, but you get the idea. OK, so there are the sources. But what is that "spec" file men-
tioned in the output? It mentions something about "/usr/src/redhat/SPECS", so let's see
what we have in that directory:

Miscellanea

111

ls -al /usr/src/redhat/SPECS

-rw-r--r-- 1 root root 397 Apr 24 22:36 cdp-0.33.spec

Without making a long story too short, a spec file contains information used by RPM to create the
binary and source packages. Using the spec file, RPM:

• Unpacks the sources.

• Applies patches (if any exist).

• Builds the software.

• Creates the binary package file.

• Creates the source package file.

• Cleans up after itself.

The neatest part of this is that RPM does this all automatically, under the control of the spec file.
That's about all we're going to say about how RPM builds packages. For more information, please
refer to the second half of this book.

Stick with us!
As we've noted several times, we'll be covering the entire subject of building packages with RPM, in
the second half of the book. Be forewarned, however: Package building, while straightforward, is
not a task for people new to programming. But if you've written a program or two, you'll probably
find RPM's package building a piece of cake.

Miscellanea

112

Part II. RPM and Developers — How
to Distribute Your Software More

Easily With RPM

Table of Contents
9. The Philosophy Behind RPM .. 118

Pristine Sources ... 118
Easy Builds ... 119

Reproducible Builds ... 119
Unattended Builds .. 119

Multi-architecture/operating system Support ... 119
Easier For Your Users ... 120

Easy Upgrades ... 120
Intelligent Configuration File Handling .. 120
Powerful Query Capabilities ... 120
Easy Package Verification ... 120

To Summarize… .. 120
10. The Basics of Developing With RPM .. 121

The Inputs .. 121
The Sources .. 121
The Patches .. 121
The Spec File .. 122

The Engine: RPM .. 123
The Outputs .. 123

The Source Package File ... 123
The Binary RPM .. 124

And Now… .. 124
11. Building Packages: A Simple Example .. 125

Creating the Build Directory Structure ... 125
Getting the Sources .. 125
Creating the Spec File ... 126

The Preamble .. 126
The %prep Section .. 128
The %build Section ... 129
The %install Section .. 129
The %files Section ... 129
The Missing Spec File Sections .. 130

Starting the Build ... 131
When Things Go Wrong .. 134

Problems During the Build ... 134
Testing Newly Built Packages .. 135

12. rpmbuild Command Reference ... 136
rpmbuild — What Does it Do? .. 137

rpmbuild -bp — Execute %prep ... 137
rpmbuild -bc — Execute %prep, %build ... 138
rpmbuild -bi — Execute %prep, %build, %install, %check 139
rpmbuild -bb — Execute %prep, %build, %install, %check, package (bin) 141
rpmbuild -ba — Execute %prep, %build, %install, %check, package (bin, src) 142
rpmbuild -bl — Check %files list .. 143
--short-circuit — Force build to start at particular stage 145
--buildarch <arch> — Perform Build For the <arch> Architecture 147
--buildos <os> — Perform Build For the <os> Operating System 147
--sign — Add a Digital Signature to the Package .. 148
--test — Create, Save Build Scripts For Review ... 149
--clean — Clean up after build ... 150
--buildroot <path> — Execute %install using <path> as the root 151
--timecheck <secs> — Print a warning if files to be packaged are over <secs> old
.. 153
-vv — Display debugging information ... 154
--quiet — Produce as Little Output as Possible .. 155
--rcfile <rcfile> — Set alternate rpmrc file to <rcfile> 155

Other Build-related Commands ... 155

114

rpmbuild --recompile — What Does it Do? ... 156
rpmbuild --rebuild — What Does it Do? ... 156

13. Inside the Spec File ... 159
Comments: Notes Ignored by RPM ... 159
Tags: Data Definitions .. 159

Package Naming Tags ... 160
Descriptive Tags .. 161
Dependency Tags ... 164
Architecture- and Operating System-Specific Tags ... 167
Directory-related Tags .. 169
Source and Patch Tags .. 170

Scripts: RPM's Workhorse ... 173
Build-time Scripts .. 173
Install/Erase-time Scripts ... 176
Verification-Time Script — The %verifyscript Script 178

Macros: Helpful Shorthand for Package Builders ... 178
The %setup Macro .. 178
The %patch Macro .. 187

The %files List .. 190
Directives For the %files list .. 190

File-related Directives ... 190
Directory-related Directives ... 194

The Lone Directive: %package .. 197
-n <string> — Use <string> As the Entire Subpackage Name 198

Conditionals .. 199
The %ifarch Conditional .. 199
The %ifnarch Conditional .. 199
The %ifos Conditional .. 200
The %ifnos Conditional .. 200
The %else Conditional .. 200
The %endif Conditional .. 200

14. Adding Dependency Information to a Package .. 202
An Overview of Dependencies ... 202
Automatic Dependencies ... 202

The Automatic Dependency Scripts ... 203
Automatic Dependencies: An Example ... 204
The autoreqprov, autoreq, and autoprov Tags — Disable Automatic Dependency Pro-
cessing ... 205

Manual Dependencies ... 205
The Requires Tag .. 205
The Conflicts Tag .. 208
The Provides Tag .. 208

To Summarize… .. 209
15. Making a Relocatable Package .. 211

Why relocatable packages? .. 211
The prefix tag: Relocation Central .. 211
Relocatable Wrinkles: Things to Consider ... 212

%files List Restrictions ... 213
Relocatable Packages Must Contain Relocatable Software 213
The Relocatable Software Is Referenced By Other Software 214

Building a Relocatable Package .. 214
Tying Up the Loose Ends .. 216
Test-Driving a Relocatable Package ... 216

16. Making a Package That Can Build Anywhere ... 220
Using Build Roots in a Package .. 220

Some Things to Consider ... 223
Having RPM Use a Different Build Area .. 224

Setting up a Build Area ... 224
Directing RPM to Use the New Build Area ... 225
Performing a Build in a New Build Area ... 225

Specifying File Attributes .. 227
%attr — How Does It Work? .. 227
Betcha Thought We Forgot… ... 228

RPM and Developers — How to
Distribute Your Software More Eas-

115

17. Adding PGP Signatures to a Package .. 230
Why Sign a Package? .. 230
Getting Ready to Sign ... 230

Preparing PGP: Creating a Key Pair ... 230
Preparing RPM .. 232

Signing Packages ... 233
--sign — Sign a Package At Build-Time ... 233
--resign — Replace a Package's Signature(s) ... 234
--addsign — Add a Signature To a Package .. 235

18. Creating Subpackages .. 238
What Are Subpackages? .. 238
Why Are They Needed? .. 238
Our Example Spec File: Subpackages Galore! ... 238
Spec File Changes For Subpackages .. 239

The Subpackage's "Preamble" ... 239
The %files List .. 243
Install- and Erase-time Scripts .. 245

Build-Time Scripts: Unchanged For Subpackages .. 246
Our Spec File: One Last Look… ... 247

Building Subpackages ... 248
Giving Subpackages the Once-Over ... 249

19. Building Packages for Multiple Architectures and Operating Systems 252
Architectures and Operating Systems: A Primer ... 252

Let's Just Call Them Platforms .. 252
What Does RPM Do To Make Multi-Platform Packaging Easier? 253

Automatic Detection of Build Platform .. 253
Automatic Detection of Install Platform .. 253
Platform-Dependent Tags .. 253
Platform-Dependent Conditionals .. 253

Build and Install Platform Detection .. 253
Platform-Specific rpmrc Entries .. 253
Overriding Platform Information At Build-Time .. 255
Overriding Platform Information At Install-Time ... 256

optflags — The Other rpmrc File Entry .. 256
Platform-Dependent Tags .. 256

The excludexxx Tag .. 256
The exclusivexxx Tag .. 257

Platform-Dependent Conditionals .. 257
Common Features of All Conditionals .. 258
%ifxxx ... 259
%ifnxxx ... 259

Hints and Kinks ... 260
20. Real-World Package Building ... 261

An Overview of Amanda ... 261
Initial Building Without RPM ... 261

Setting Up A Test Build Area ... 261
Getting Software to build ... 262
Installing and testing ... 264

Initial Building With RPM ... 265
Generating patches ... 265
Making a first-cut spec file ... 267
Getting the original sources unpacked .. 269
Getting patches properly applied ... 270
Letting RPM do the Building .. 272
Letting RPM do the Installing ... 272
Testing RPM's Handiwork ... 273

Package Building ... 273
Creating the %files list ... 275
Testing those first packages .. 280
Finishing Touches .. 281

21. A Guide to the RPM Library API ... 288
An Overview of rpmlib ... 288
rpmlib Functions .. 288

ily With RPM

116

Error Handling .. 288
Getting Package Information .. 289
Variable Manipulation .. 290
rpmrc-Related Information ... 291
RPM Database Manipulation .. 293
RPM Database Traversal ... 294
RPM Database Search ... 295
Package Manipulation ... 298
Package And File Verification .. 301
Dependency-Related Operations ... 302
Diagnostic Output Control ... 304
Signature Verification ... 305
Header Manipulation .. 306
Header Entry Manipulation .. 308
Header Iterator Support ... 310

Example Code ... 311
Example #1 ... 311
Example #2 ... 313
Example #3 ... 316

RPM and Developers — How to
Distribute Your Software More Eas-

117

Chapter 9. The Philosophy Behind
RPM

As we saw in the first half of this book, RPM can make life much easier for the user. With auto-
mated installs, upgrades, and erasures, RPM can take a lot of the guesswork out of keeping a com-
puter system up-to-date.

But what about people that sling code for a living? Does RPM have anything to offer them? The an-
swer is yes! One of the best things about RPM is that although it was designed to make life easier
for users, it was written by people that would be using it to build many packages. So the design
philosophy of RPM has a definite bias toward making life easier for developers. Here are some of
the reasons you should consider building packages with RPM:

Pristine Sources
While many developers might use RPM to package their own software, just as many, if not more,
are going to be packaging software that they have not written. Because of this, there are some as-
pects to RPM's design that are geared toward "third-party" package builders. One such aspect is
RPM's use of "pristine" sources.

When a third-party package builder decides to package someone else's software, they often get the
software from the Net, normally as a tar file compressed with something like GNU zip. That's prob-
ably about the only generalization we can make when talking about software that is eligible for
packaging. Once we look inside the tar file, there are a world of possible differences:

• The application could be available in pure source form, in pure binary form, or some combina-
tion of both.

• The application might have been written to be built using make, imake, or a script included
with the sources. Or, it might have to be built entirely by hand.

• The application might need to be configured prior to use. Maybe it uses GNU configure, a cus-
tom configuration script, or one or more files that need to be edited to reflect the target environ-
ment.

• The application might have been written to reside in specific directories, and those directories do
not exist, or are not appropriate on the target system.

• The application might not even support the target environment, requiring all manner of changes
to port it to the target environment.

We could go on, but you probably get the idea. It's a rare application that comes off the Net ready to
package, and the changes required vary widely. What to do?

This is where the concept of pristine sources comes in. RPM has been designed to use the sources as
they come from the application's developer, no matter how it has been packaged and configured.
The main benefit is that the changes you as a package builder need to make, remain separate from
the original sources, in a distinct collection of patches.

This may not sound like much of an advantage, but consider how this would work if a new version
of the application came out. If the new version had a few localized bug fixes, it's entirely possible
the original patches could be applied, and a new package built, with a single RPM command. Even
if the patches didn't apply cleanly, it would at least give an indication as to what might need to be
done to get the new version built and packaged.

If your users sometimes customize packages, having pristine sources makes it easier for them, too.
They can see what patches you've created and can easily add their own.

118

Another benefit to using pristine sources is that it makes keeping track of multiple versions of a
package simple. Instead of keeping patched sources around, or battling a revision control system, it's
only necessary to keep:

• The original sources in their tar file.

• A copy of the patches you applied to get the application to build.

• A file used by RPM to control the package building process.

With these three items, it's possible to easily build the package at any time. Keeping track of mul-
tiple versions only entails keeping track of each version of these three components, rather than hun-
dreds or thousands of patched source files.

In fact, it gets better than that. RPM can also build a source package containing these three compon-
ents. The source package, named using RPM's standard naming convention, keeps everything you
need to recreate a specific version of a package, in one uniquely named file. Keeping track of mul-
tiple versions of multiple packages is simply a matter of keeping the appropriate source packages
around. Everything else can be built from them.

Easy Builds
RPM makes it easy to build packages. Just as with the use of pristine sources, the fact that the build
process is simple is an even greater advantage to the third-party package builders responsible for
many packages, than it is to a one-package software development house. But in either case, RPM's
ease of building is a welcome relief. The following sections document some of the ways that RPM
makes building packages a straightforward process.

Reproducible Builds
One of the biggest problems facing developers is reproducing a particular build. This single problem
is the main reason so much effort is put into creating and deploying version control systems to man-
age sources.

While RPM cannot compete with a full-blown revision control system, it does an excellent job of
keeping in one place everything required to build a particular version of a package. Remember the
source package we mentioned above? With one command, RPM can open the package, extract the
sources, patch them, perform a build, and create a new binary package, ready for your users. The
best part is that the binary package will be the same every time you build it because everything
needed to create it is kept in one source package.

Unattended Builds
As we mentioned above, completely building a package takes only one RPM command. This makes
it easy to set up automated build procedures that can build one hundred packages as easily as one.
Anything from a single package consisting of one application to the several hundred packages that
comprise an entire operating system, can be built automatically using RPM.

Multi-architecture/operating system Support
It has always been a fact of life for software developers that their applications may need to be ported
to multiple operating systems. It is also becoming more common that a particular operating system
might run on several different platforms, or architectures.

RPM's ability to support multiple architectures and operating systems makes it easy to build the
same package for many OS/platform combinations. A package may be configured to build on only
one architecture/OS combination, or on several. The only limitation is the application's portability.

The Philosophy Behind RPM

119

Easier For Your Users
While we are primarily concerned with RPM's advantages from the developer's point of view, it's
worth looking at RPM from the user's standpoint for a moment. After all, if RPM makes life easier
for your users, that can translate into lower support costs.

Easy Upgrades
Probably the biggest headache for user and developer alike is the upgrade of an application, or
worse yet, an entire operating system! RPM can make upgrading a one-step process. With one com-
mand, a new package can be installed, and the remnants of the old package removed.

Intelligent Configuration File Handling
Configuration files — nearly every application has them. They may go by different names, but they
all control the behavior of their application. Users normally customize config files to their liking and
would be upset if their customizations were lost during the installation, upgrade, or removal of a
package.

RPM takes special care with a user's config files. By using MD5 checksums, RPM can determine
what action is most appropriate with a config file. If a config file has been modified by the user and
has to be replaced, it is saved. That way a user's modifications are never lost.

Powerful Query Capabilities
RPM uses a database to keep track of all files it installs. RPM's database provides other benefits,
such as the wide variety of information that can be easily retrieved from it. RPM's query command
makes it easy for users to quickly answer a number of questions, such as:

• Where did this file come from? Is it part of a package?

• What does this package do?

• What packages are installed on my system?

These are just a few examples of the many ways RPM can provide information about one or more
packages on a user's system.

Easy Package Verification
Another way that RPM leverages the information stored in its database, is by providing an easy way
to verify that a package is properly installed. With this capability, RPM makes it easy to determine,
for example, what packages were damaged by a wildcard delete in /usr/bin. In addition, RPM's
verification command can detect changes to file attributes, such as a file's permissions, ownership,
and size.

To Summarize…
RPM was written by developers for developers. It makes building packages as easy as possible, even
if the software being packaged hasn't been developed in-house. In addition, RPM presents some sig-
nificant advantages to users, thereby reducing support needs.

In the next chapter, we'll introduce the basic concepts of package building with RPM.

The Philosophy Behind RPM

120

Chapter 10. The Basics of Developing
With RPM

Now that we've seen the design philosophy of RPM, let's look at the nuts and bolts of RPM's build
process. Building a package is similar to compiling code — there are inputs, an engine that does the
dirty work, and outputs.

The Inputs
There are three different kinds of inputs that are used to drive RPM's build process. Two of the three
inputs are required, and the third, strictly speaking, is optional. But unless you're packaging your
own code, chances are you'll need it.

The Sources
First and foremost, are the sources. After all, without them, there wouldn't be much to build! In the
case of packaging someone else's software, the sources should be kept as the author distributed
them, which usually means a compressed tar file. RPM can handle other archive formats, but a bit
more up-front effort is required.

In any case, you should not modify the sources used in the package building process. If you're a
third-party package builder, that means the sources should be just the way you got them from the au-
thor's FTP site. If it's your own software, the choice is up to you, but you should consider starting
with your mainstream sources.

The Patches
Why all the emphasis on unmodified sources? Because RPM gives you the ability to automatically
apply patches to them. Usually, the nature of these patches falls into one of the following categories:

• The patch addresses an issue specific to the target system. This could include changing make-
files to install the application into the appropriate directories, or resolving cross-platform con-
flicts, such as replacing BSD system calls with their SYSV counterparts.

• The patch creates files that are normally created during a configuration step in the installation
process. Many times, it's necessary to either edit configuration files or scripts in order to set
things up for compilation. In other cases, a configuration utility needs to be run before the
sources are compiled. In either instance, the patches create the environment required for proper
compilation.

Creating the Patches

While it might sound a bit daunting to take into account the types of patches outlined above, it's
really quite simple. Here's how it's done:

1. Unpack the sources.

2. Rename the top-level directory. Make it end with ".orig", for example.

3. Unpack the sources again, leaving the top-level directory name unchanged.

The source tree that you created the second time will be the one you'll use to get the software to
build.

121

If the software builds with no changes required, that's great — you won't need a patch. But if you
had to make any changes, you'll have to create a set of patches. To do so, simply clean the source
directory of any binaries. Then, issue a recursive diff command to compare the source tree you used
for the build, against the original, unmodified source tree. It's as easy as that!

The Spec File
The spec file is at the heart of RPM's packaging building process. Similar in concept to a makefile,
it contains information required by RPM to build the package, as well as instructions telling RPM
how to build it. The spec file also dictates exactly what files are a part of the package, and where
they should be installed.

As you might imagine, with this many responsibilities, the spec file format can be a bit complex.
However, it's broken into several sections, making it easier to handle. All told, there are eight sec-
tions:

The Preamble

The preamble contains information that will be displayed when users request information about the
package. This would include a description of the package's function, the version number of the soft-
ware, and so on. Also contained in the preamble are lines identifying sources, patches, and even an
icon to be used if the package is manipulated by graphical interface.

The Prep Section

The prep section is where the actual work of building a package starts. As the name implies, this
section is where the necessary preparations are made prior to the actual building of the software. In
general, if anything needs to be done to the sources prior to building the software, it needs to happen
in the prep section. Usually, this boils down to unpacking the sources.

The contents of this section are an ordinary shell script. However, RPM does provide two macros to
make life easier. One macro can unpack a compressed tar file and cd into the source directory. The
other macro easily applies patches to the unpacked sources.

The Build Section

Like the prep section, the build section consists of a shell script. As you might guess, this section is
used to perform whatever commands are required to actually compile the sources. This section
could consist of a single make command, or be more complex if the build process requires it. Since
most software is built today using make, there are no macros available in this section.

The Install Section

Also containing a shell script, the install section is used to perform the commands required to actu-
ally install the software. If the software's author added an install target in the makefile, this section
might only consist of a make install command. Otherwise, you'll need to add the usual assortment
of cp, mv, or install commands to get the job done.

Install and Uninstall Scripts

While the previous sections contained either information required by RPM to build the package, or
the actual commands to do the deed, this section is different. It consists of scripts that will be run, on
the user's system, when the package is actually installed or removed. RPM can execute a script:

• Prior to the package being installed.

• After the package has been installed.

• Prior to the package being erased.

The Basics of Developing With RPM

122

• After the package has been erased.

One example of when this capability would be required is when a package contains shared libraries.
In this case, ldconfig would need to be run after the package is installed or erased. As another ex-
ample, if a package contains a shell, the file /etc/shells would need to be updated appropri-
ately when the package was installed or erased.

The Verify Script

This is another script that is executed on the user's system. It is executed when RPM verifies the
package's proper installation. While RPM does most of the work verifying packages, this script can
be used to verify aspects of the package that are beyond RPM's capabilities.

The Clean Section

Another script that can be present is a script that can clean things up after the build. This script is
rarely used, since RPM normally does a good job of clean-up in most build environments.

The File List

The last section consists of a list of files that will comprise the package. Additionally, a number of
macros can be used to control file attributes when installed, as well as to denote which files are doc-
umentation, and which contain configuration information. The file list is very important — if it is
missing, no package will be built.

The Engine: RPM
At the center of the action is RPM. It performs a number of steps during the build process:

• Executes the commands and macros in the prep section of the spec file.

• Checks the contents of the file list.

• Executes the commands and macros in the build section of the spec file.

• Executes the commands and macros in the install section of the spec file. Any macros in the file
list are executed at this time, too.

• Creates the binary package file.

• Creates the source package file.

By using different options on the RPM command line, the build process can be stopped at any of the
steps above. This makes the initial building of a package that much easier, as it is then possible to
see whether each step completed successfully before continuing on to the next step.

The Outputs
The end product of this entire process is a source package file and a binary package file.

The Source Package File
The source package file is a specially formatted archive that contains the following files:

• The original compressed tar file(s).

The Basics of Developing With RPM

123

• The spec file.

• The patches.

Since the source package contains everything needed to create the binary package, the source pack-
age, and provide the original sources, it's a great way to distribute source code. As mentioned earli-
er, it's also a great way to archive all the information needed to rebuild a particular version of the
package.

The Binary RPM
The binary package file is the one part of the entire RPM building process that is most visible to the
user. It contains the files that comprise the application, along with any additional information
needed to install and erase it. The binary package file is where the "rubber hits the road."

And Now…
Now that we've seen, in broad brush terms, the way RPM builds packages, let's take a look at an ac-
tual build. The next chapter will do just that, showing how simple it can be to build a package.

The Basics of Developing With RPM

124

1 In reality, this software is a mercilessly hacked version of cdp, which was written by Sariel Har-Peled. The software was hacked to provide
a simple example package, and in no way represents the fine work done by Sariel on cdp.

Chapter 11. Building Packages: A
Simple Example

In the previous chapter, we looked at RPM's build process from a conceptual level. In this chapter,
we will be performing an actual build using RPM. In order to keep things understandable for this
first pass, the build will be very simple. Once we've covered the basics, we'll present more real-
world examples in later chapters.

Creating the Build Directory Structure
RPM requires a set of directories in which to perform the build. While the directories' locations and
names can be changed, unless there's a reason to do so, it's best to use the default layout. Note that if
you've installed RPM, the build directories are most likely in place already.

The normal directory layout consists of a single top-level directory (The default name is /
usr/src/redhat), with five subdirectories. The five subdirectories and their functions are:

• /usr/src/redhat/SOURCES — Contains the original sources, patches, and icon files.

• /usr/src/redhat/SPECS — Contains the spec files used to control the build process.

• /usr/src/redhat/BUILD — The directory in which the sources are unpacked, and the
software is built.

• /usr/src/redhat/RPMS — Contains the binary package files created by the build process.

• /usr/src/redhat/SRPMS — Contains the source package files created by the build pro-
cess.

In general, there are no special requirements that need to be met when creating these directories. In
fact, the only important requirement is that the BUILD directory be part of a filesystem with suffi-
cient free space to build the largest package expected. Here is a directory listing showing a typical
build directory tree:

ls -lF /usr/src/redhat

total 5
drwxr-xr-x 3 root root 1024 Aug 5 13:12 BUILD/
drwxr-xr-x 3 root root 1024 Jul 17 17:51 RPMS/
drwxr-xr-x 4 root root 1024 Aug 4 22:31 SOURCES/
drwxr-xr-x 2 root root 1024 Aug 5 13:12 SPECS/
drwxr-xr-x 2 root root 1024 Aug 4 22:28 SRPMS/

#

Now that we have the directories ready to go, it's time to prepare for the build. For the remainder of
this chapter, we'll be building a fictional piece of software known as cdplayer. 1

Getting the Sources

125

The first thing we need to do in order to build a package for cdplayer, is to obtain the sources. Being
avid cdplayer fans from way back, we know that the latest source can be found at GnomoVision's
FTP site, so we go get a copy.

We now have a gzipped tar file of cdplayer version 1.0 on our system. After putting a copy in the
SOURCES directory, we're ready to tell RPM what to do with it.

Creating the Spec File
The way we direct RPM in the build process is to create a spec file. As we saw in the previous
chapter, the spec file contains eight different sections, most of which are required. Let's go through
each section and create cdplayer's spec file as we go.

The Preamble
The preamble contains a wealth of information about the package being built, and the people that
built it. Here's cdplayer's preamble:

#
Example spec file for cdplayer app...
#
Summary: A CD player app that rocks!
Name: cdplayer
Version: 1.0
Release: 1
License: GPL
Group: Applications/Sound
Source: ftp://ftp.gnomovision.com/pub/cdplayer/cdplayer-1.0.tgz
URL: http://www.gnomovision.com/cdplayer/cdplayer.html
Distribution: WSS Linux
Vendor: White Socks Software, Inc.
Packager: Santa Claus <sclaus@northpole.com>

%description
It slices! It dices! It's a CD player app that
can't be beat. By using the resonant frequency
of the CD itself, it is able to simulate 20X
oversampling. This leads to sound quality that
cannot be equaled with more mundane software...

In general, the preamble consists of entries, one per line, that start with a tag followed by a colon,
and then some information. For example, the line starting with "Summary:" gives a short descrip-
tion of the packaged software that can be displayed by RPM. The order of the lines is not important,
as long as they appear in the preamble.

Let's take a look at each line and see what function it performs:

Name

The name line defines what the package will actually be called. In general, it's a good idea to use
the name of the software. The name will also be included in the package label, and the package file-
name.

Version

The version line should be set to the version of the software being packaged. The version will also
be included in the package label, and the package filename.

Building Packages: A Simple Ex-
ample

126

Release

The release is a number that is used to represent the number of times the software, at the present
version, has been packaged. You can think of it as the package's version number. The release is also
part of the package label and package filename.

License

The license line is used to hold the packaged software's license information. This makes it easy to
determine which packages can be freely redistributed, and which cannot. In our case, cdplayer is
made available under the terms of the GNU General Public License, so we've put GPL on the line.

Group

The group line is used to hold a string that defines how the packaged software should be grouped
with other packages. The string consists of a series of words separated by slashes. From left to right,
the words describe the packaged software more explicitly. We grouped cdplayer under Applica-
tions, because it is an application, and then under Sound, since it is an application that is sound-
related.

Source

The source line serves two purposes:

• To document where the packaged software's sources can be found.

• To give the name of the source file as it exists in the SOURCES subdirectory.

In our example, the cdplayer sources are contained in the file cdplayer-1.0.tgz, which is
available from ftp.gnomovision.com, in the directory /pub/cdplayer. RPM actually ig-
nores everything prior to the last filename in the source line, so the first part of the source string
could be anything you'd like. Traditionally, the source line usually contains a Uniform Resource
Locator, or URL.

URL

The URL line is used to contain a URL, like the source line. How are they different? While the
source line is used to provide the source filename to RPM, the URL line points to documentation
for the software being packaged.

Distribution

The distribution line contains the name of the product which the packaged software is a part of. In
the Linux world, the operating system is often packaged together into a "distribution", hence the
name. Since we're using a fictional application in this example, we've filled in the distribution line
with the name of a fictional distribution. There's no requirement that the spec file contain a distribu-
tion line, so individuals will probably omit this.

Vendor

The vendor line identifies the organization that distributes the software. Maintaining our fictional
motif, we've invented fictional company, White Socks Software, to add to our spec file. Individuals
will probably omit this as well.

Packager

The packager line is used to identify the organization that actually packaged the software, as op-
posed to the author of the software. In our example, we've chosen the greatest packager of them all,

Building Packages: A Simple Ex-
ample

127

2 For more information on the environment variables used in the build-time scripts, please refer to the section called “Build-time Scripts”.

Santa Claus, to work at White Socks Software. Note that we've included contact information, in the
form of an e-mail address.

Description

The description line is a bit different, in that it starts with a percent sign. It is also different because
the information can take up more than one line. It is used to provide a more detailed description of
the packaged software than the summary line.

A Comment on Comments

At the top of the spec file, there are three lines, each starting with a pound sign. These are comments
and can be sprinkled throughout the spec file to make it more easily understood.

The %prep Section
With the preamble, we provided a wealth of information. The majority of this information is meant
for human consumption. Only the name, version, release, and source lines have a direct bearing on
the package building process. However, in the %prep section, the focus is entirely on directing
RPM through the process of preparing the software for building.

It is in the %prep section that the build environment for the software is created, starting with re-
moving the remnants of any previous builds. Following this, the source archive is expanded. Here is
what the %prep section looks like in our example spec file:

%prep
rm -rf $RPM_BUILD_DIR/cdplayer-1.0
zcat $RPM_SOURCE_DIR/cdplayer-1.0.tgz | tar -xvf -

If the %prep section looks like a script, that's because it is. Any sh constructs can be used here, in-
cluding expansion of environment variables (Like the $RPM_BUILD_DIR variable defined by
RPM), and piping the output of zcat through tar. 2

In this case, we perform a recursive delete in the build directory to remove any old builds. We then
uncompress the gzipped tar file, and extract its contents into the build directory.

Quite often, the sources may require patching in order to build properly. The %prep section is the
appropriate place to patch the sources, but in this example, no patching is required. Fear not,
however, as we'll explore patching in all its glory in Chapter 20, Real-World Package Building,
when we build a more complex package.

Making Life Easier With Macros

While the %prep section as we've described it isn't that difficult to understand, RPM provides mac-
ros to make life even easier. In this simple example, there's precious little that can be made easier,
but macros will prevent a wealth of headaches when it's time to build more complex packages. The
macro we'll introduce here is the %setup macro.

The average gzipped tar file is %setup's stock in trade. Like the hand-crafted %prep section we
described above, it cleans up old build trees and then uncompresses and extracts the files from the
original source. While %setup has a number of options that we'll cover in later chapters, for now all
we need for a %prep section is:

%prep

Building Packages: A Simple Ex-
ample

128

%setup

That is simpler than our %prep section, so let's use the %setup macro instead. The %setup macro
has a number of options to handle many different situations. For more information on this and other
macros, please see the section called “Macros: Helpful Shorthand for Package Builders”.

In our example here, the %prep section is complete. Next comes the actual build.

The %build Section
Not surprisingly, the part of the spec file that is responsible for performing the build, is the %build
section. Like the %prep section, the %build section is an ordinary sh script. Unlike the %prep
section, there are no macros. The reason for this is that the process of building software is either go-
ing to be very easy, or highly complicated. In either case, macros won't help much. In our example,
the build process is simple:

%build
make

Thanks to the make utility, only one command is necessary to build the cdplayer application. In the
case of an application with more esoteric build requirements, the %build section could get a bit
more interesting.

The %install Section
The %install section is executed as a sh script, just like %prep and %build. If the application is
built with make and has an "install" target, the %install section will also be straightforward. The
cdplayer application is a good example of this:

%install
make install

If the application doesn't have a means of automatically installing itself, it will be necessary to cre-
ate a script to do so, and place it in the %install section.

The %files Section
The %files section is different from the others, in that it contains a list of the files that are part of the
package. Always remember — if it isn't in the file list, it won't be put in the package!

%files
%doc README
/usr/local/bin/cdp
/usr/local/bin/cdplay
/usr/local/man/man1/cdp.1

The line starting with %doc is an example of RPM's handling of different file types. As you might

Building Packages: A Simple Ex-
ample

129

guess, %doc stands for documentation. The %doc directive is used to mark files as being docu-
mentation. In the example above, the README file will be placed in a package-specific directory,
located in /usr/doc, and called cdplayer-1.0-1. It's also possible to mark files as document-
ation and have them installed in other directories. This is covered in more detail in the section called
“The %doc Directive”.

The rest of the files in the example are shown with complete paths. This is necessary as the files will
actually be installed in those directories by the application's makefile. Since RPM needs to be able
to find the files prior to packaging them, complete paths are required.

How Do You Create the File List?

Since RPM automates so many aspects of software installation, it's easy to fall into the trap of as-
suming that RPM does everything for you. Not so! One task that is still a manual process is creating
the file list. While it may seem at first glance, that it could be automated somehow, it's actually a
more difficult problem than it seems.

Since the majority of an application's files are installed by its makefile, RPM has no control over
that part of the build process, and therefore, cannot automatically determine which files should be
part of the package. Some people have attempted to use a modified version of install that logs the
name of every file it installs. But not every makefile uses install, or if it does, uses it sporadically.

Another approach tried was to obtain a list of every file on the build system, immediately before and
after a build, and use the differences as the file list. While this approach will certainly find every file
that the application installed, it can also pick up extraneous files, such as system logs, files in /tmp,
and the like. The only way to begin to make this approach workable would be to do nothing else on
the build system, which is highly inconvenient. This approach also precludes building more than
one package on the system at any given time.

At present, the best way to create the file list is to read the makefile to see what files it installs, veri-
fy this against the files installed on the build system, and create the list.

The Missing Spec File Sections
Since our example spec file is somewhat simplistic, it's missing two sections that might be used in
more complex situations. We'll go over each one briefly here. More complete information on these
sections will be covered at various points in the book.

The Install/Uninstall Scripts

One missing section to our spec file is the section that would define one or more of four possible
scripts. The scripts are executed at various times when a package is installed or erased.

The scripts can be executed:

• Before a package is installed.

• After a package is installed.

• Before a package is erased.

• After a package is erased.

We'll see how these scripts are used in Chapter 20, Real-World Package Building.

The %clean Section

The other missing section has the rather descriptive title of %clean. This section can be used to
clean up any files that are not part of the application's normal build area. For example, if the applica-
tion creates a directory structure in /tmp as part of its build, it will not be removed. By adding a sh

Building Packages: A Simple Ex-
ample

130

script to the %clean section, such situations can be handled gracefully, right after the binary pack-
age is created.

Starting the Build
Now it's time to begin the build. First, we change directory into the directory holding cdplayer's spec
file:

cd /usr/src/redhat/SPECS
#

Next, we start the build with an rpmbuild command:

rpmbuild -ba cdplayer-1.0.spec

The a following the -b option directs RPM to perform all phases of the build process. Sometimes it
is necessary to stop at various phases during the initial build to resolve problems that crop up while
writing the spec file. In these cases, other letters can be used after the -b in order to stop the build at
the desired phase. For this example however, we will continue through the entire build process.

In this example, the only other argument to the build command is the name of the package's spec
file. This can be wild-carded to build more than one package, but in our example, we'll stick with
one.

Let's look at RPM's output during the build:

* Package: cdplayer
+ umask 022
+ echo Executing: %prep
Excuting: %prep
+ cd /usr/src/redhat/BUILD
+ cd /usr/src/redhat/BUILD
+ rm -rf cdplayer-1.0
+ gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz
+ tar -xvvf -
drwxrwxr-x root/users 0 Aug 4 22:30 1996 cdplayer-1.0/
-rw-r--r-- root/users 17982 Nov 10 01:10 1995 cdplayer-1.0/COPYING
-rw-r--r-- root/users 627 Nov 10 01:10 1995 cdplayer-1.0/ChangeLog
-rw-r--r-- root/users 482 Nov 10 01:11 1995 cdplayer-1.0/INSTALL
…
-rw-r--r-- root/users 2720 Nov 10 01:10 1995 cdplayer-1.0/struct.h
-rw-r--r-- root/users 730 Nov 10 01:10 1995 cdplayer-1.0/vol.c
-rw-r--r-- root/users 2806 Nov 10 01:10 1995 cdplayer-1.0/volume.c
-rw-r--r-- root/users 1515 Nov 10 01:10 1995 cdplayer-1.0/volume.h
+ [0 -ne 0]
+ cd cdplayer-1.0
+ cd /usr/src/redhat/BUILD/cdplayer-1.0
+ chown -R root.root .
+ chmod -R a+rX,g-w,o-w .
+ exit 0

The output continues, but let's stop here for a moment, and discuss what has happened so far.

At the start of the output, RPM displays the package name (cdplayer), sets the umask, and starts
executing the %prep section. Thanks to the %setup macro, RPM then changes directory into the
build area, removes any existing old sources, and extracts the sources from the original compressed

Building Packages: A Simple Ex-
ample

131

tar file. Although each file is listed as it is extracted, we've omitted most of the files listed, to save
space.

The %setup macro continues by changing directory into cdplayer's top-level source directory and
setting the file ownership and permissions properly. As you can see, it does quite a bit of work for
you.

Let's take a look at the output from the %build section next:

+ umask 022
+ echo Excuting: %build
Excuting: %build
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
+ make
gcc -Wall -O2 -c -I/usr/include/ncurses cdp.c
gcc -Wall -O2 -c -I/usr/include/ncurses color.c
gcc -Wall -O2 -c -I/usr/include/ncurses display.c
gcc -Wall -O2 -c -I/usr/include/ncurses misc.c
gcc -Wall -O2 -c -I/usr/include/ncurses volume.c
volume.c: In function `mix_set_volume':
volume.c:67: warning: implicit declaration of function `ioctl'
gcc -Wall -O2 -c -I/usr/include/ncurses hardware.c
gcc -Wall -O2 -c -I/usr/include/ncurses database.c
gcc -Wall -O2 -c -I/usr/include/ncurses getline.c
gcc -o cdp cdp.o color.o display.o misc.o volume.o hardware.o database.o
getline.o -I/usr/include/ncurses -L/usr/lib -lncurses
groff -Tascii -man cdp.1 | compress >cdp.1.Z
+ exit 0

There are no surprises here. After setting the umask and changing directory into cdplayer's top-level
directory, RPM issues the make command we put into the spec file. The rest of the output comes
from make as it actually builds the software. Next comes the %install section:

+ umask 022
+ echo Excuting: %install
Excuting: %install
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
+ make install
chmod 755 cdp
chmod 644 cdp.1.Z
cp cdp /usr/local/bin
ln -s /usr/local/bin/cdp /usr/local/bin/cdplay
cp cdp.1 /usr/local/man/man1
+ exit 0

Just like the previous sections, RPM again sets the umask and changes directory into the proper dir-
ectory. It then executes cdplayer's install target, installing the newly built software on the build sys-
tem. Those of you that carefully studied the spec file might have noticed that the README file is not
part of the install section. It's not a problem, as we see here:

+ umask 022
+ echo Excuting: special doc
Excuting: special doc
+ cd /usr/src/redhat/BUILD

Building Packages: A Simple Ex-
ample

132

+ cd cdplayer-1.0
+ DOCDIR=//usr/doc/cdplayer-1.0-1
+ rm -rf //usr/doc/cdplayer-1.0-1
+ mkdir -p //usr/doc/cdplayer-1.0-1
+ cp -ar README //usr/doc/cdplayer-1.0-1
+ exit 0

After the customary umask and cd commands, RPM constructs the path that will be used for cd-
player's documentation directory. It then cleans out any preexisting directory and copies the
README file into it. The cdplayer app is now installed on the build system. The only thing left to do
is to create the actual package files, and perform some housekeeping. The binary package file is cre-
ated first:

Binary Packaging: cdplayer-1.0-1
Finding dependencies...
Requires (2): libc.so.5 libncurses.so.2.0
usr/doc/cdplayer-1.0-1
usr/doc/cdplayer-1.0-1/README
usr/local/bin/cdp
usr/local/bin/cdplay
usr/local/man/man1/cdp.1
93 blocks
Generating signature: 0
Wrote: /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm

The first line says it all: RPM is creating the binary package for cdplayer version 1.0, release 1.
Next, RPM determines what packages are required by cdplayer-1.0-1. Part of this process en-
tails running ldd on each executable program in the package. In this example, the package requires
the libraries libc.so.5, and libncurses.so.2.0. Other dependency information can be in-
cluded in the spec file, but for our example we'll keep it simple.

Following the dependency information, there is a list of every directory and file included in the
package. The list displayed is actually the output of cpio, which is the archiving software used by
RPM to bundle the package's files. The "93 blocks" is also printed by cpio.

The line "Generating signature: 0" means that RPM has not been directed to add a PGP
signature to the package file. During this time, however, RPM still adds two signatures that can be
used to verify the size and the MD5 checksum of the package file. Finally, we see confirmation that
RPM has created the binary package file.

At this point, the application has been built, and the application's files have been packaged. There is
no longer any need for any files created during the build, so they may be removed. In the case of the
sources extracted into RPM's build directory, we can see that, at worst, they will be removed the
next time the package is built. But what if there were files that we needed to remove? Well, they
could be deleted here, in the %clean section:

+ umask 022
+ echo Excuting: %clean
Excuting: %clean
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
+ exit 0

In our example, there are no other files outside of the build directory that are created during cdplay-

Building Packages: A Simple Ex-
ample

133

er's build, so we don't need to expend any additional effort to clean things up.

The very last step performed by RPM is to create the source package file:

Source Packaging: cdplayer-1.0-1
cdplayer-1.0.spec
cdplayer-1.0.tgz
80 blocks
Generating signature: 0
Wrote: /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

#

This file includes everything needed to recreate a binary package file, as well as a copy of itself. In
this example, the only files needed to do that are the original sources and the spec file. In cases
where the original sources needed to be modified, the source package includes one or more patch
files. As when the binary package was created, we see cpio's output listing each file archived, along
with the archive's block size.

Just like a binary package, a source package file can have a PGP signature attached to it. In our case,
we see that a PGP signature was not attached. The last message from RPM is to confirm the creation
of the source package. Let's take a look at the end products. First, the binary package:

ls -lF /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm

-rw-r--r-- 1 root root 24698 Aug 6 22:22 RPMS/i386/cdplayer-1.0-1.i386.rpm

#

Note that we built cdplayer on an Intel-based system, so RPM placed the binary package files in the
i386 subdirectory.

Next, the source package file:

ls -lF /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

-rw-r--r-- 1 root root 41380 Aug 6 22:22 SRPMS/cdplayer-1.0-1.src.rpm

#

Everything went perfectly — we now have binary and source package files ready to use. But some-
times things don't go so well.

When Things Go Wrong
This example is a bit of a fairy tale, in that it went perfectly the first time. In real life, it often takes
several tries to get it right.

Problems During the Build
As we alluded to earlier in the chapter, RPM can stop at various points in the build process. This al-
lows package builders to look through the build directory and make sure everything is proceeding
properly. If there are problems, stopping during the build process permits them to see exactly what
is going wrong, and where. Here is a list of points RPM can be stopped at during the build:

Building Packages: A Simple Ex-
ample

134

3 Like we said, it's a fairy tale!

• After the %prep section.

• After doing some cursory checks on the %files list.

• After the %build section.

• After the %install section.

• After the binary package has been created.

In addition, there is also a method that permits the package builder to "short circuit" the build pro-
cess and direct RPM to skip over the initial steps. This is handy when the application is not yet
ready for packaging and needs some fine tuning. This way, once the package builds, installs, and op-
erates properly, the required patches to the original sources can be created, and plugged into the
package's spec file.

Testing Newly Built Packages
Of course, the fact that an application has been packaged successfully doesn't necessarily mean that
it will operate correctly when the package is actually installed. Testing is required. In the case of our
example, it's perfect and doesn't need such testing. 3 But here is how testing would proceed:

The first step is to find a test system. If you thought of simply using the build system, bzzzzt, try
again! Think about it — in the course of building the package, the build system actually had the ap-
plication installed on it. That is how RPM gets the files that are to be packaged: by building the soft-
ware, installing it, and grabbing copies of the installed files, which are found using the %files list.

Some of you dissenters that have read the first half of the book might be thinking, "Why not just in-
stall the package on the build system using the --replacefiles option? That way, it'll just blow away
the files installed by the build process and replace them with the packaged files." Well, you folks get
a bzzzzt, too! Here's why.

Say, for example, that the software you're packaging installs a bunch of files — maybe a hundred.
What does this mean? Well for one thing, it means that the package's %files list is going to be quite
large. For another thing, the sheer number of files makes it likely that you'll miss one or two. What
would happen then?

When RPM builds the software, there's no problem: the software builds, and the application's make-
file merrily installs all the files. The next step in RPM's build process is to collect the files by read-
ing the %files list, and to add each file listed to a cpio archive. What happens to the files you've
missed? Nothing — they aren't added to the package file, but they are on your build system, in-
stalled just where they should be.

Next, when the package is installed using --replacefiles, RPM dutifully installs each of the pack-
aged files, replacing the ones originally installed on the build system. The missed files? They aren't
overwritten by RPM since they weren't in the package. But they're still on disk, right where the ap-
plication expects them to be! If you go to test the application then, it will find every file it needs.
But not every file came from the package. Bad news! Using a different system on which the applica-
tion had never been built is one sure way to test for missing files.

That wraps up our fictional build. Now that we have some experience with RPM's build process, we
can take a more in-depth look at RPM's build command.

Building Packages: A Simple Ex-
ample

135

Chapter 12. rpmbuild Command
Reference

Table 12.1. rpmbuild Command Syntax

rpmbuild -b<stage> options file1.spec … fileN.spec

<stage> Page

p Execute %prep the section called “ rpmbuild -bp
— Execute %prep ”

c Execute %prep, %build the section called “ rpmbuild -bc
— Execute %prep, %build ”

i Execute %prep, %build, %install,
%check

the section called “ rpmbuild -bi —
Execute %prep, %build, %install,
%check ”

b Execute %prep, %build, %install,
%check, package (bin)

the section called “ rpmbuild -bb
— Execute %prep, %build,
%install, %check, package (bin) ”

a Execute %prep, %build, %install,
%check, package (bin, src)

the section called “ rpmbuild -ba
— Execute %prep, %build,
%install, %check, package (bin,
src) ”

l Check %files list the section called “ rpmbuild -bl —
Check %files list ”

Parameters

file1.spec … fileN.spec One or more .spec files

Build-specific Options Page

--short-circuit Force build to start at particular
stage (-bc, -bi only)

the section called “ --short-circuit
— Force build to start at particular
stage ”

--test Create, save build scripts for review the section called “ --test — Create,
Save Build Scripts For Review ”

--clean Clean up after build the section called “--clean — Clean
up after build”

--sign Add a digital signature to the pack-
age

the section called “ --sign — Add a
Digital Signature to the Package ”

--buildroot <root> Execute %install using <root> as
the root

the section called “ --buildroot
<path> — Execute %install using
<path> as the root ”

--buildarch <arch> Perform build for the <arch> ar-
chitecture

the section called “ --buildarch
<arch> — Perform Build For the
<arch> Architecture ”

--buildos <os> Perform build for the <os> operat-
ing system

the section called “ --buildos <os>
— Perform Build For the <os> Op-
erating System ”

--timecheck <secs> Print a warning if files are over
<secs> old

the section called “ --timecheck
<secs> — Print a warning if files
to be packaged are over <secs>
old ”

General Options Page

-vv Display debugging information the section called “-vv — Display

136

debugging information”

--quiet Produce as little output as possible the section called “ --quiet — Pro-
duce as Little Output as Possible ”

--rcfile <rcfile> Set alternate rpmrc file to
<rcfile>

the section called “ --rcfile
<rcfile> — Set alternate rpmrc
file to <rcfile> ”

rpmbuild — What Does it Do?
When RPM is invoked with the -b option, the process of building a package is started. The rest of
the command will determine exactly what is to be built and how far the build should proceed. In this
chapter, we'll explore every aspect of rpm -b.

An RPM build command must have two additional pieces of information, over and above "rpm-
build":

1. The names of one or more spec files representing software to be packaged.

2. The desired stage at which the build is to stop.

As we discussed in Chapter 10, The Basics of Developing With RPM, the spec file is one of the in-
puts to RPM's build process. It contains the information necessary for RPM to perform the build and
package the software.

There are a number of stages that RPM goes through during a build. By specifying that the build
process is to stop at a certain stage, the package builder can monitor the build's progress, make any
changes necessary, and restart the build. Let's start by looking at the various stages that can be spe-
cified in a build command.

rpmbuild -bp — Execute %prep
The command rpmbuild -bp directs RPM to execute the very first step in the build process. In the
spec file, this step is labeled %prep. Every command in the %prep section will be executed when
the -bp option is used.

Here's a simple %prep section from the spec file we used in Chapter 11, Building Packages: A
Simple Example:

%prep
%setup

This %prep section consists of a single %setup macro. When using rpm -bp against this spec file,
we can see exactly what %setup does:

rpmbuild -bp cdplayer-1.0.spec

* Package: cdplayer
Executing(%prep):
+ umask 022
+ cd /usr/src/redhat/BUILD
+ cd /usr/src/redhat/BUILD
+ rm -rf cdplayer-1.0
+ gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz
+ tar -xvvf -

rpmbuild Command Reference

137

drwxrwxr-x root/users 0 Aug 4 22:30 1996 cdplayer-1.0/
-rw-r--r-- root/users 17982 Nov 10 01:10 1995 cdplayer-1.0/COPYING
-rw-r--r-- root/users 627 Nov 10 01:10 1995 cdplayer-1.0/ChangeLog
…
-rw-r--r-- root/users 2806 Nov 10 01:10 1995 cdplayer-1.0/volume.c
-rw-r--r-- root/users 1515 Nov 10 01:10 1995 cdplayer-1.0/volume.h
+ [0 -ne 0]
+ cd cdplayer-1.0
+ cd /usr/src/redhat/BUILD/cdplayer-1.0
+ chown -R root.root .
+ chmod -R a+rX,g-w,o-w .
+ exit 0

#

First, RPM confirms that the cdplayer package is the subject of this build. Then it sets the umask
and starts executing the %prep section. At this point, the %setup macro is doing its thing. It
changes directory into the build area and removes any old copies of cdplayer's build tree.

Next, %setup unzips the sources and uses tar to create the build tree. We've removed the complete
listing of files, but be prepared to see lots of output if the software being packaged is large.

Finally, %setup changes directory into cdplayer's build tree and changes ownership and file per-
missions appropriately. The exit 0 signifies the end of the %prep section, and therefore, the end
of the %setup macro. Since we used the -bp option, RPM stopped at this point. Let's see what RPM
left in the build area:

cd /usr/src/redhat/BUILD
ls -l

total 1
drwxr-xr-x 2 root root 1024 Aug 4 22:30 cdplayer-1.0

#

There's the top-level directory. Changing directory into cdplayer-1.0, we find the sources are
ready to be built:

cd cdplayer-1.0
ls -lF

total 216
-rw-r--r-- 1 root root 17982 Nov 10 1995 COPYING
-rw-r--r-- 1 root root 627 Nov 10 1995 ChangeLog
…
-rw-r--r-- 1 root root 2806 Nov 10 1995 volume.c
-rw-r--r-- 1 root root 1515 Nov 10 1995 volume.h

#

We can see that %setup's chown and chmod commands did what they were supposed to — the
files are owned by root, with permissions set appropriately.

If not stopped by the -bp option, the next step in RPM's build process would be to build the soft-
ware. RPM can also be stopped at the end of the %build section in the spec file. This is done by us-
ing the -bc option:

rpmbuild -bc — Execute %prep, %build

rpmbuild Command Reference

138

When the -bc option is used during a build, RPM stops once the software has been built. In terms of
the spec file, every command in the %build section will be executed. In the following example,
we've removed the output from the %prep section to cut down on the redundant output, but keep in
mind that it is executed nonetheless:

rpmbuild -bc cdplayer-1.0.spec

* Package: cdplayer
Executing(%prep):
…
+ exit 0
Executing(%build):
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
+ make
gcc -Wall -O2 -c -I/usr/include/ncurses cdp.c
gcc -Wall -O2 -c -I/usr/include/ncurses color.c
gcc -Wall -O2 -c -I/usr/include/ncurses display.c
gcc -Wall -O2 -c -I/usr/include/ncurses misc.c
gcc -Wall -O2 -c -I/usr/include/ncurses volume.c
volume.c: In function `mix_set_volume':
volume.c:67: warning: implicit declaration of function `ioctl'
gcc -Wall -O2 -c -I/usr/include/ncurses hardware.c
gcc -Wall -O2 -c -I/usr/include/ncurses database.c
gcc -Wall -O2 -c -I/usr/include/ncurses getline.c
gcc -o cdp cdp.o color.o display.o misc.o volume.o hardware.o database.o
getline.o -I/usr/include/ncurses -L/usr/lib -lncurses
groff -Tascii -man cdp.1 | compress >cdp.1.Z
+ exit 0

#

After the command, we see RPM executing the %prep section (which we've removed almost en-
tirely). Next, RPM starts executing the contents of the %build section. In our example spec file, the
%build section looks like this:

%build
make

We see that prior to the make command, RPM changes directory into cdplayer's top-level direct-
ory. RPM then starts the make, which ends with the groff command. At this point, the execution of
the %build section has been completed. Since the -bc option was used, RPM stops at this point.

The next step in the build process would be to install the newly built software. This is done in the
%install (and %check) section of the spec file. RPM can be stopped after the install has taken place
by using the -bi option:

rpmbuild -bi — Execute %prep, %build, %install,
%check

By using the -bi option, RPM is directed to stop once the software is completely built and installed,
and the test suite has been run on the build system. Here's what the output of a build using the -bi
option looks like:

rpmbuild -bi cdplayer-1.0.spec

rpmbuild Command Reference

139

* Package: cdplayer
Executing(%prep):
…
+ exit 0
Executing(%build):
…
+ exit 0
Executing(%install):
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
+ make install
chmod 755 cdp
chmod 644 cdp.1.Z
cp cdp /usr/local/bin
ln -s /usr/local/bin/cdp /usr/local/bin/cdplay
cp cdp.1 /usr/local/man/man1
+ exit 0
Executing(%check):
+ umask 022
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
+ make test
All tests run successfully.
+ exit 0
Executing(%doc):
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
+ DOCDIR=//usr/doc/cdplayer-1.0-1
+ rm -rf //usr/doc/cdplayer-1.0-1
+ mkdir -p //usr/doc/cdplayer-1.0-1
+ cp -ar README //usr/doc/cdplayer-1.0-1
+ exit 0

#

As before, we've excised most of the previously described sections. In this example, the %install
section looks like:

%install
make install

After the %prep and %build sections, the %install section is executed. Looking at the output, we
see that RPM changes directory into cdplayer's top-level directory and issues the make install
command, the sole command in the %install section. The output from that point until the first
exit 0, is from make install.

The next part of the output is from the %check section, ie. the sole command make test.

The remaining commands are due to the contents of the spec file's %files list. Here's what it looks
like:

%files
%doc README
/usr/local/bin/cdp
/usr/local/bin/cdplay
/usr/local/man/man1/cdp.1

rpmbuild Command Reference

140

The line responsible is %doc README. The %doc tag identifies the file as being documentation.
RPM handles documentation files by creating a directory in /usr/doc and placing all documenta-
tion in it. The exit 0 at the end signifies the end of the %install section. RPM stops due to the -bi
option.

The next step at which RPM's build process can be stopped is after the software's binary package
file has been created. This is done using the -bb option:

rpmbuild -bb — Execute %prep, %build, %install,
%check, package (bin)

rpmbuild -bb cdplayer-1.0.spec

* Package: cdplayer
Executing(%prep):
…
+ exit 0
Executing(%build):
…
+ exit 0
Executing(%install):
…
+ exit 0
Executing(%check):
…
+ exit 0
Executing(%doc):
…
+ exit 0
Binary Packaging: cdplayer-1.0-1
Finding dependencies...
Requires (2): libc.so.5 libncurses.so.2.0
usr/doc/cdplayer-1.0-1
usr/doc/cdplayer-1.0-1/README
usr/local/bin/cdp
usr/local/bin/cdplay
usr/local/man/man1/cdp.1
93 blocks
Generating signature: 0
Wrote: /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm
Executing(%clean):
+ umask 022
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
+ exit 0

#

After executing the %prep, %build, %install, and %check sections, and handling any special
documentation files, RPM then creates a binary package file. In the sample output, we see that first
RPM performs automatic dependency checking. It does this by determining which shared libraries
are required by the executable programs contained in the package. Next, RPM actually archives the
files to be packaged, optionally signs the package file, and outputs the finished product.

The last part of RPM's output looks suspiciously like a section in the spec file being executed. In our
example, there is no %clean section. If there were, however, RPM would have executed any com-
mands in the section. In the absence of a %clean section, RPM simply issues the usual cd com-
mands and exits normally.

rpmbuild -ba — Execute %prep, %build, %install,

rpmbuild Command Reference

141

%check, package (bin, src)
The -ba option directs RPM to perform all the stages in building a package. With this one com-
mand, RPM:

• Unpacks the original sources.

• Applies patches (if desired).

• Builds the software.

• Installs the software.

• Runs the test suite for the software.

• Creates the binary package file.

• Creates the source package file.

That's quite a bit of work for one command! Here it is, in action:

rpmbuild -ba cdplayer-1.0.spec

* Package: cdplayer
Executing(%prep):
…
+ exit 0
Executing(%build):
…
+ exit 0
Executing(%install):
…
+ exit 0
Executing(%check):
…
+ exit 0
Executing(%doc):
…
+ exit 0
Binary Packaging: cdplayer-1.0-1
…
Executing(%clean):
…
+ exit 0
Source Packaging: cdplayer-1.0-1
cdplayer-1.0.spec
cdplayer-1.0.tgz
80 blocks
Generating signature: 0
Wrote: /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

#

As in previous examples, RPM executes the %prep, %build, %install, and %check sections,
handles any special documentation files, creates a binary package file, and cleans up after itself.

The final step in the build process is to create a source package file. As the output shows, it consists
of the spec file and the original sources. A source package may optionally include one or more patch
files, although in our example, cdplayer requires none.

At the end of a build using the -ba option, the software has been successfully built and packaged in
both binary and source form. But there are a few more build-time options that we can use. One of

rpmbuild Command Reference

142

them is the -bl option:

rpmbuild -bl — Check %files list
There's one last letter that may be specified with rpm -b, but unlike the others, which indicate the
stage at which the build process is to stop, this option performs a variety of checks on the %files list
in the named spec file. When l is added to rpmbuild, the following checks are performed:

• Expands the spec file's %files list and checks that each file listed actually exists.

• Determines what shared libraries the software requires by examining every executable file listed.

• Determines what shared libraries are provided by the package.

Why is it necessary to do all this checking? When would it be useful? Keep in mind that the %files
list must be generated manually. By using the -bl option, the following steps are all that's necessary
to create a %files list:

• Writing the %files list.

• Using the -bl option to check the %files list.

• Making any necessary changes to the %files list.

It may take more than one iteration through these steps, but eventually the list check will pass. Us-
ing the -bl option to check the %files list is certainly better than starting a two-hour package build,
only to find out at the very end that the list contains a misspelled filename.

Here's an example of the -bl option in action:

rpmbuild -bl cdplayer-1.0.spec

* Package: cdplayer
File List Check: cdplayer-1.0-1
Finding dependencies...
Requires (2): libc.so.5 libncurses.so.2.0

#

It's hard to see exactly what RPM is doing from the output, but if we add -vv, we can get a bit more
information:

rpmbuild -bl -vv cdplayer-1.0.spec

D: Switched to BASE package
D: Source(0) = sunsite.unc.edu:/pub/Linux/apps/sound/cds/cdplayer-1.0.tgz
D: Switching to part: 12
D: fileFile =
D: Switched to package: (null)
D: Switching to part: 2
D: fileFile =
D: Switching to part: 3
D: fileFile =
D: Switching to part: 4
D: fileFile =
D: Switching to part: 10
D: fileFile =
D: Switched to package: (null)
* Package: cdplayer

rpmbuild Command Reference

143

File List Check: cdplayer-1.0-1
D: ADDING: /usr/doc/cdplayer-1.0-1
D: ADDING: /usr/doc/cdplayer-1.0-1/README
D: ADDING: /usr/local/bin/cdp
D: ADDING: /usr/local/bin/cdplay
D: ADDING: /usr/local/man/man1/cdp.1
D: md5(/usr/doc/cdplayer-1.0-1/README) = 2c149b2fb1a4d65418131a19b242601c
D: md5(/usr/local/bin/cdp) = 0f2a7a2f81812c75fd01c52f456798d6
D: md5(/usr/local/bin/cdplay) = d41d8cd98f00b204e9800998ecf8427e
D: md5(/usr/local/man/man1/cdp.1) = b32cc867ae50e2bdfa4d6780b084adfa
Finding dependencies...
D: Adding require: libncurses.so.2.0
D: Adding require: libc.so.5
Requires (2): libc.so.5 libncurses.so.2.0

#

Looking at this more verbose output, it's easy to see there's a great deal going on. Some of it is not
directly pertinent to checking the %files list, however. For example, the output extending from the
first line, to the line reading * Package: cdplayer, reflects processing that takes place during
actual package building, and can be ignored.

Following that section is the actual %files list check. In this section, every file named in the %files
list is checked to make sure it exists. The phrase, ADDING:, again reflects RPM's package building
roots. When using the -bl option, however, RPM is simply making sure the files exist on the build
system. If the --timecheck option (described a bit later, on the section called “ --timecheck
<secs> — Print a warning if files to be packaged are over <secs> old ”) is present, the checks
required by that option are performed here, as well.

After the list check, the MD5 checksums of each file are calculated and displayed. While this in-
formation is vital during actual package building, it is not used when using the -bl option.

Finally, RPM determines which shared libraries the listed files require. In this case, there are only
two — libc.so.5, and libncurses.so.2.0. While not strictly a part of the list-checking
process, displaying shared library dependencies can be quite helpful at this point. It can point out
possible problems, such as assuming that the target systems have a certain library installed when, in
fact, they do not.

So far, we've only seen what happens when the %files list is correct. Let's see what happens where
the list has problems. In this example, we've added a bogus file to the package's %files list:

rpmbuild -bl cdplayer-1.0.spec

* Package: cdplayer
File List Check: cdplayer-1.0-1
File not found: /usr/local/bin/bogus
Build failed.

#

Reflecting more of its package building roots, rpm -bl says that the "build failed". But the bottom
line is that there is no such file as /usr/bin/bogus. In this example we made the name obvi-
ously wrong, but in a more real-world setting, the name will more likely be a misspelling in the
%files list. OK, let's correct the %files list and try again:

rpmbuild -bl cdplayer-1.0.spec

* Package: cdplayer
File List Check: cdplayer-1.0-1
File not found: /usr/local/bin/cdplay
Build failed.

rpmbuild Command Reference

144

#

Another error! In this case the file is spelled correctly, but it is not on the build system, even though
it should be. Perhaps it was deleted accidentally. In any case, let's rebuild the software and try again:

rpmbuild -bi cdplayer-1.0.spec

* Package: cdplayer
Executing(%prep):
…
+ exit 0
Executing(%build):
…
+ exit 0
Executing(%install):
…
ln -s /usr/local/bin/cdp /usr/local/bin/cdplay
…
+ exit 0
Executing(%check):
…
+ exit 0
Executing(%doc):
…
+ exit 0

#
rpmbuild -bl cdplayer-1.0.spec

* Package: cdplayer
File List Check: cdplayer-1.0-1
Finding dependencies...
Requires (2): libc.so.5 libncurses.so.2.0

#

Done! The moral to this story is that using rpm -bl and fixing the error it flagged doesn't necessarily
mean your %files list is ready for prime-time: Always run it again to make sure!

--short-circuit — Force build to start at particular stage
Although it sounds dangerous, the --short-circuit option can be your friend. This option is used dur-
ing the initial development of a package. Earlier in the chapter, we explored stopping RPM's build
process at different stages. Using --short-circuit, we can start the build process at different stages.

One time that --short-circuit comes in handy is when you're trying to get software to build properly.
Just think what it would be like — you're hacking away at the sources, trying a build, getting an er-
ror, and hacking some more to fix that error. Without --short-circuit, you'd have to:

1. Make your change to the sources.

2. Use tar to create a new source archive.

3. Start a build with something like rpmbuild -bc.

4. See another bug.

5. Go back to step 1.

rpmbuild Command Reference

145

1 As we mentioned in Chapter 10, The Basics of Developing With RPM, if the original sources need to be modified, the modifications should
be kept as a separate set of patches. However, during development, it makes more sense to not generate patches every time a change to the
original source is made.

Pretty cumbersome! Since RPM's build process is designed to start with the sources in their original
tar file, unless your modifications end up in that tar file, they won't be used in the next build. 1

But there's another way. Just follow these steps:

1. Place the original source tar file in RPM's SOURCES directory.

2. Create a partial spec file in RPM's SPECS directory (Be sure to include a valid Source line).

3. Issue an rpmbuild -bp to properly create the build environment.

Now use --short-circuit to attempt a compile. Here's an example:

rpmbuild -bc --short-circuit cdplayer-1.0.spec

* Package: cdplayer
Executing(%build):
+ umask 022
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
+ make
gcc -Wall -O2 -c -I/usr/include/ncurses cdp.c
gcc -Wall -O2 -c -I/usr/include/ncurses color.c
gcc -Wall -O2 -c -I/usr/include/ncurses display.c
gcc -Wall -O2 -c -I/usr/include/ncurses misc.c
gcc -Wall -O2 -c -I/usr/include/ncurses volume.c
volume.c: In function `mix_set_volume':
volume.c:67: warning: implicit declaration of function `ioctl'
gcc -Wall -O2 -c -I/usr/include/ncurses hardware.c
gcc -Wall -O2 -c -I/usr/include/ncurses database.c
gcc -Wall -O2 -c -I/usr/include/ncurses getline.c
gcc -o cdp cdp.o color.o display.o misc.o volume.o

hardware.o database.o getline.o -I/usr/include/ncurses
-L/usr/lib -lncurses

groff -Tascii -man cdp.1 | compress >cdp.1.Z
+ exit 0

#

Normally, the -bc option instructs RPM to stop the build after the %build section of the spec file
has been executed. By adding --short-circuit, however, RPM starts the build by executing the
%build section and stops when everything in %build has been executed.

There is only one other build stage that can be --short-circuit'ed, and that is the install stage. The
reason for this restriction is to make it difficult to bypass RPM's use of pristine sources. If it were
possible to --short-circuit to -bb or -ba, a package builder might take the "easy" way out and
simply hack at the build tree until the software built successfully, then package the hacked sources.
So, RPM will only --short-circuit to -bc or -bi. Nothing else will do.

What exactly does an rpmbuild -bi --short-circuit do, anyway? Like an rpmbuild -bc -
-short-circuit, it starts executing at the named stage, which in this case is %install. Note that the
build environment must be ready to perform an install before attempting to --short-circuit to the
%install stage. If the software installs via make install, make will automatically compile the soft-
ware anyway.

And what happens if the build environment isn't ready and a --short-circuit is attempted? Let's see:

rpmbuild Command Reference

146

rpmbuild -bi --short-circuit cdplayer-1.0.spec

* Package: cdplayer
Executing(%install):
+ umask 022
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
/var/tmp/rpmbu01157aaa: cdplayer-1.0: No such file or directory
Bad exit status

#

RPM blindly started executing the %install stage, but came to an abrupt halt when it attempted to
change directory into cdplayer-1.0, which didn't exist. After giving a descriptive error mes-
sage, RPM exited with a failure status. Except for some minor differences, rpmbuild -bc would
have failed in the same way.

--buildarch <arch> — Perform Build For the <arch>
Architecture

The --buildarch option is used to override RPM's architecture detection logic. The option is fol-
lowed by the desired architecture name. Here's an example:

rpmbuild -ba --buildarch i486 cdplayer-1.0.spec

* Package: cdplayer
…
Binary Packaging: cdplayer-1.0-1
…
Wrote: /usr/src/redhat/RPMS/i486/cdplayer-1.0-1.i486.rpm
…
Wrote: /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

#

We've removed most of RPM's output from this example, but the main thing we can see from this
example is that the package was built for the i486 architecture, due to the inclusion of the -
-buildarch option on the command line. We can also see that RPM wrote the binary package in the
architecture-specific directory, /usr/src/redhat/RPMS/i486. Using RPM's --queryformat
option confirms the package's architecture:

rpmquery -qp --queryformat '%{arch}\n' /usr/src/redhat/RPMS/i486/cdplayer-1.0-1.i486.rpm

i486

#

For more information on build packages for multiple architectures, please see Chapter 19, Building
Packages for Multiple Architectures and Operating Systems .

--buildos <os> — Perform Build For the <os> Operat-
ing System

The --buildos option is used to override RPM's operating system detection logic. The option is fol-
lowed by the desired operating system name. Here's an example:

rpmbuild Command Reference

147

rpmbuild -ba --buildos osf1 cdplayer-1.0.spec

…
Binary Packaging: cdplayer-1.0-1
…
Wrote: /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm
Source Packaging: cdplayer-1.0-1
…
Wrote: /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

#

There's nothing in the build output that explicitly states the build operating system as been set to
osf1. Let's see if --queryformat will tell us:

rpmquery -qp --queryformat '%{os}\n' /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm

osf1

#

The package was indeed built for the specified operating system. For more information on building
packages for multiple operating systems, please see Chapter 19, Building Packages for Multiple Ar-
chitectures and Operating Systems .

--sign — Add a Digital Signature to the Package
The --sign option directs RPM to add a digital signature to the package being built. Currently, this is
done using PGP. Here's an example of --sign in action:

rpmbuild -ba --sign cdplayer-1.0.spec

Enter pass phrase: passphrase (not echoed)
Pass phrase is good.
* Package: cdplayer
…
Binary Packaging: cdplayer-1.0-1
…
Generating signature: 1002
Wrote: /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm
…
Source Packaging: cdplayer-1.0-1
…
Generating signature: 1002
Wrote: /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

#

The most obvious effect of adding the --sign option to a build command is that RPM then asks for
your private key's passphrase. After entering the passphrase (which isn't echoed), the build proceeds
as usual. The only other difference between this and a non-signed build is that the Generating
signature: lines have a non-zero value.

Let's check the source and binary packages we've just created and see if they are, in fact, signed:

rpmsign --checksig /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

rpmbuild Command Reference

148

/usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm: size pgp md5 OK

rpmsign --checksig /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm

/usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm: size pgp md5 OK

#

The fact that there is a pgp in --checksig's output indicates that the packages have been signed.

For more information on signing packages, please see Chapter 17, Adding PGP Signatures to a
Package. Also, Appendix G, An Introduction to PGP contains information on obtaining and in-
stalling PGP.

--test — Create, Save Build Scripts For Review
There are times when it might be necessary to get a more in-depth view of a particular build. By us-
ing the --test option, it's easy. When --test is added to a build command, the scripts RPM would nor-
mally use to actually perform the build, are created and saved for you to review. Let's see how it
works:

rpmbuild -ba --test cdplayer-1.0.spec

* Package: cdplayer

#

Unlike a normal build, there's not much output. But the --test option has caused a set of scripts to be
written and saved for you. The question is: Where are they?

If you are using a customized rpmrc file, the scripts will be written to the directory specified by the
rpmrc entry tmppath. If you haven't changed this setting, RPM, by default, writes the scripts in /
var/tmp. Here they are:

ls -l /var/tmp

total 4
-rw-rw-r-- 1 root root 670 Sep 17 20:35 rpmbu00236aaa
-rw-rw-r-- 1 root root 449 Sep 17 20:35 rpmbu00236baa
-rw-rw-r-- 1 root root 482 Sep 17 20:35 rpmbu00236caa
-rw-rw-r-- 1 root root 552 Sep 17 20:35 rpmbu00236daa

#

Each file contains a script that performs a given part of the build. Here's the first file:

#!/bin/sh -e
Script generated by rpm

RPM_SOURCE_DIR="/usr/src/redhat/SOURCES"
RPM_BUILD_DIR="/usr/src/redhat/BUILD"
RPM_DOC_DIR="/usr/doc"
RPM_OPT_FLAGS="-O2 -m486 -fno-strength-reduce"
RPM_ARCH="i386"
RPM_OS="Linux"
RPM_ROOT_DIR="/tmp/cdplayer"
RPM_BUILD_ROOT="/tmp/cdplayer"

rpmbuild Command Reference

149

RPM_PACKAGE_NAME="cdplayer"
RPM_PACKAGE_VERSION="1.0"
RPM_PACKAGE_RELEASE="1"
set -x

umask 022

echo Executing(%prep)
cd /usr/src/redhat/BUILD

cd /usr/src/redhat/BUILD
rm -rf cdplayer-1.0
gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
cd cdplayer-1.0
cd /usr/src/redhat/BUILD/cdplayer-1.0
chown -R root.root .
chmod -R a+rX,g-w,o-w .

As we can see, this script contains the %prep section from the spec file. The script starts off by de-
fining a number of environment variables and then leads into the %prep section. In the spec file
used in this build, the %prep section consists of a single %setup macro. In this file, we can see ex-
actly how RPM expands that macro. The remaining files follow the same basic layout — a section
defining environment variables, followed by the commands to be executed.

Note that the --test option will only create script files for each build stage, as specified in the com-
mand line. For example, if the above command was changed to:

rpmbuild -bp --test cdplayer-1.0.spec
#

only one script file, containing the %prep commands, would be written. In any case, no matter
what RPM build command is used, the --test option can let you see exactly what is going to happen
during a build.

--clean — Clean up after build
The --clean option can be used to ensure that the package's build directory tree is removed at the
end of a build. Although it can be used with any build stage, it doesn't always make much sense to
do so:

rpmbuild -bp --clean cdplayer-1.0.spec

* Package: cdplayer
Executing(%prep):
…
+ exit 0
Executing(--clean):
+ cd /usr/src/redhat/BUILD
+ rm -rf cdplayer-1.0
+ exit 0

#

In this example, we see a typical %prep section being executed. The line "Execut-
ing(--clean):" indicates the start of the --clean's activity. After changing directory into the

rpmbuild Command Reference

150

build directory, RPM then issues a recursive delete on the package's top-level directory.

As we noted above, this particular example doesn't make much sense. We're only executing the
%prep section, which creates the package's build tree, and using --clean, which removes it! Using -
-clean with the -bc option isn't very productive either, as the newly built software remains in the
build tree. Once again, there would be no remnants left after --clean has done its thing.

Normally, the --clean option is used once the software builds and can be packaged successfully. It is
particularly useful when more than one package is to be built, since --clean ensures that the filesys-
tem holding the build area will not fill up with build trees from each package.

Note also that the --clean option only removes the files that reside in the software's build tree. If
there are any files that the build creates outside of this hierarchy, it will be necessary to write a script
for the spec file's %clean section.

--buildroot <path> — Execute %install using <path>
as the root

The --buildroot option can make two difficult situations much easier:

• Performing a build without impacting the build system.

• Allowing non-root users to build packages.

Let's study the first situation in a bit more detail. Say, for example, that sendmail is to be packaged.
In the course of creating a sendmail package, the software must be installed. This would mean that
critical sendmail files, such as sendmail.cf and aliases, would be overwritten. Mail handling
on the build system would almost certainly be disrupted.

In the second case, it's certainly possible to set permissions such that non-root users can install soft-
ware, but highly unlikely that any system administrator worth their salt would do so. What can be
done to make these situations more tenable?

The --buildroot option is used to instruct RPM to use a directory other than / as a "build root". This
phrase is a bit misleading, in that the build root is not the root directory under which the software is
built. Rather, it is the root directory for the install phase of the build. When a build root is not spe-
cified, the software being packaged is installed relative to the build system's root directory "/".

However, it's not enough to just specify a build root on the command line. The spec file for the
package must be set up to support a build root. If you don't make the necessary changes, this is what
you'll see:

rpmbuild -ba --buildroot /tmp/foo cdplayer-1.0.spec

Package can not do build prefixes
Build failed.

#

Chapter 16, Making a Package That Can Build Anywhere has complete instructions on the modific-
ations necessary to configure a package to use an alternate build root, as well as methods to permit
users to build packages without root access. Assuming that the necessary modifications have been
made, here is what the build would look like:

rpmbuild -ba --buildroot /tmp/foonly cdplayer-1.0.spec

* Package: cdplayer
Executing(%prep):

rpmbuild Command Reference

151

+ cd /usr/src/redhat/BUILD
…
+ exit 0
Executing(%build):
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
…
+ exit 0
Executing(%install):
+ umask 022
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
+ make ROOT=/tmp/foonly install
install -m 755 -o 0 -g 0 -d /tmp/foonly/usr/local/bin/
install -m 755 -o 0 -g 0 cdp /tmp/foonly/usr/local/bin/cdp
rm -f /tmp/foonly/usr/local/bin/cdplay
ln -s /tmp/foonly/usr/local/bin/cdp /tmp/foonly/usr/local/bin/cdplay
install -m 755 -o 0 -g 0 -d /tmp/foonly/usr/local/man/man1/
install -m 755 -o 0 -g 0 cdp.1 /tmp/foonly/usr/local/man/man1/cdp.1
+ exit 0
Executing(%check):
+ umask 022
…
+ exit 0
Executing(%doc):
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
+ DOCDIR=/tmp/foonly//usr/doc/cdplayer-1.0-1
+ rm -rf /tmp/foonly//usr/doc/cdplayer-1.0-1
+ mkdir -p /tmp/foonly//usr/doc/cdplayer-1.0-1
+ cp -ar README /tmp/foonly//usr/doc/cdplayer-1.0-1
+ exit 0
Binary Packaging: cdplayer-1.0-1
Finding dependencies...
Requires (2): libc.so.5 libncurses.so.2.0
usr/doc/cdplayer-1.0-1
usr/doc/cdplayer-1.0-1/README
usr/local/bin/cdp
usr/local/bin/cdplay
usr/local/man/man1/cdp.1
93 blocks
Generating signature: 0
Wrote: /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm
Executing(%clean):
+ umask 022
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
+ exit 0
Source Packaging: cdplayer-1.0-1
cdplayer-1.0.spec
cdplayer-1.0.tgz
82 blocks
Generating signature: 0
Wrote: /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

#

As the somewhat edited output shows, the %prep, %build, and %install sections are executed in
RPM's normal build directory. However, the --buildroot option comes into play when the make in-
stall is done. As we can see, the ROOT variable is set to /tmp/foonly, which was the value fol-
lowing --buildroot on the command line. From that point on, we can see that make substituted the
new build root value during the install phase.

The build root is also used when documentation files are installed. The documentation directory
cdplayer-1.0-1 is created in /tmp/foonly/usr/doc, and the README file is placed in it.

The only remaining difference that results from using --buildroot, is that the files to be included in

rpmbuild Command Reference

152

2 Or the %clean section, it doesn't matter — the end result is the same.

the binary package are not located relative to the build system's root directory. Instead they are loc-
ated relative to the build root /tmp/foonly. The resulting binary and source package files are
functionally equivalent to packages built without the use of --buildroot.

Using --buildroot Can Bite You!

Although the --buildroot option can solve some problems, using a build root can actually be dan-
gerous. How? Consider the following situation:

• A spec file is configured to have a build root of /tmp/blather, for instance.

• In the %prep section 2 , there is an rm -rf $RPM_BUILD_ROOT command to clean out any
old installed software.

• You decide to build the software so that it installs relative to your system's root directory, so you
enter the following command: "rpmbuild -ba --buildroot / foo.spec".

The end result? Since specifying "/" as the build root sets $RPM_BUILD_ROOT to "/", that innoc-
uous little rm -rf $RPM_BUILD_ROOT turns into rm -rf /! A recursive delete, starting at your sys-
tem's root directory, might not be a total disaster if you catch it quickly, but in either case, you'll be
testing your ability to restore from backup… Er, you do have backups, don't you?

The moral of this story is to be very careful when using --buildroot. A good rule of thumb is to al-
ways specify a unique build root. For example, instead of specifying /tmp as a build root (and pos-
sibly losing your system's directory for holding temporary files), use the path /tmp/mypackage,
where the directory mypackage is used only by the package you're building.

--timecheck <secs> — Print a warning if files to be
packaged are over <secs> old

While it's possible to detect many errors in the %files list using rpmbuild -bl, there is another type
of problem that can't be detected. Consider the following scenario:

• A package you're building creates the file /usr/bin/foo.

• Because of a problem with the package's makefile, foo is never copied into /usr/bin.

• An older, incompatible version of foo, created several months ago, already exists in /
usr/bin.

• RPM creates the binary package file.

Is the incompatible /usr/bin/foo included in the package? You bet it is! If only there was some
way for RPM to catch this type of problem…

Well, there is! By adding --timecheck, followed by a number, RPM will check each file being pack-
aged, to see if the file is more than the specified number of seconds old. If it is, a warning message
is displayed. The --timecheck option works with either the -ba or -bl options. Here's an example us-
ing -bl:

rpmbuild -bl --timecheck 3600 cdplayer-1.0.spec

* Package: cdplayer
File List Check: cdplayer-1.0-1
warning: TIMECHECK failure: /usr/doc/cdplayer-1.0-1/README
Finding dependencies...
Requires (2): libc.so.5 libncurses.so.2.0

#

rpmbuild Command Reference

153

3 It should be noted that the package was built substantially later than November of 1995!

In this example, the file /usr/doc/cdplayer-1.0-1/README is more than 3,600 seconds, or
one hour, old. If we take a look at the file, we find that it is: 3

ls -al /usr/doc/cdplayer-1.0-1/README

-rw-r--r-- 1 root root 1085 Nov 10 1995 README

#

In this particular case, the warning from --timecheck is no cause for alarm. Since the README file
was simply copied from the original source, which was created November 10th, 1995, its date is un-
changed. If the file had been an executable or a library that was supposedly built recently, -
-timecheck's warning should be taken more seriously.

If you'd like to set a default time check value of one hour, you can include the following line in your
rpmrc file:

timecheck: 3600

This value can still be overridden by a value on the command line, if desired. For more information
on the use of rpmrc files, see Appendix B, The rpmrc File.

-vv — Display debugging information
Unlike most other RPM commands, there is no -v option for rpmbuild. That's because the com-
mand's default is to be verbose. However, even more information can be obtained by adding -vv.
Here's an example:

rpmbuild -bp -vv cdplayer-1.0.spec

D: Switched to BASE package
D: Source(0) = sunsite.unc.edu:/pub/Linux/apps/sound/cds/cdplayer-1.0.tgz
D: Switching to part: 12
D: fileFile =
D: Switched to package: (null)
D: Switching to part: 2
D: fileFile =
D: Switching to part: 3
D: fileFile =
D: Switching to part: 4
D: fileFile =
D: Switching to part: 10
D: fileFile =
D: Switched to package: (null)
* Package: cdplayer
D: RUNNING: %prep
Executing(%prep):
+ umask 022
+ cd /usr/src/redhat/BUILD
+ cd /usr/src/redhat/BUILD
+ rm -rf cdplayer-1.0
+ gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz
+ tar -xvvf -

rpmbuild Command Reference

154

drwxrwxr-x root/users 0 Aug 4 22:30 1996 cdplayer-1.0/
-rw-r--r-- root/users 17982 Nov 10 01:10 1995 cdplayer-1.0/COPYING
…
-rw-r--r-- root/users 1515 Nov 10 01:10 1995 cdplayer-1.0/volume.h
+ [0 -ne 0]
+ cd cdplayer-1.0
+ cd /usr/src/redhat/BUILD/cdplayer-1.0
+ chown -R root.root .
+ chmod -R a+rX,g-w,o-w .
+ exit 0

#

Most of the output generated by the -vv option is preceded by a D:. In this example, the additional
output represents RPM's internal processing during the start of the build process. Using the -vv op-
tion with other build commands will produce different output.

--quiet — Produce as Little Output as Possible
As we mentioned above, the build command is normally verbose. The --quiet option can be used to
cut down on the command's output:

rpmbuild -ba --quiet cdplayer-1.0.spec

* Package: cdplayer
volume.c: In function `mix_set_volume':
volume.c:67: warning: implicit declaration of function `ioctl'
90 blocks
82 blocks

#

This is the entire output from a package build of cdplayer. Note that warning messages (actually,
anything sent to stdout) are still printed.

--rcfile <rcfile> — Set alternate rpmrc file to
<rcfile>

The --rcfile option is used to specify a file containing default settings for RPM. Normally, this op-
tion is not needed. By default, RPM uses /etc/rpmrc and a file named .rpmrc located in your
login directory.

This option would be used if there was a need to switch between several sets of RPM defaults. Soft-
ware developers and package builders will normally be the only people using the --rcfile option. For
more information on rpmrc files, see Appendix B, The rpmrc File.

Other Build-related Commands
There are two other commands that also perform build-related functions. However, they do not use
the rpmbuild command syntax that we've been studying so far. Instead of specifying the name of
the spec file, as with rpmbuild, it's necessary to specify the name of the source package file.

Why the difference in syntax? The reason has to do with the differing functions of these commands.
Unlike rpmbuild, where the name of the game is to get software packaged into binary and source
package files, these commands use an already-existing source package file as input. Let's take a look
at them:

rpmbuild Command Reference

155

rpmbuild --recompile — What Does it Do?
The --recompile option directs RPM to perform the following steps:

• Install the specified source package file.

• Unpack the original sources.

• Build the software.

• Install the software.

• Run the tests.

While you might think this sounds a great deal like an install of the source package file, followed by
an rpmbuild -bi, this is not entirely the case. Using --recompile, the only file required is the source
package file. After the software is built and installed, the only thing left, other than the newly in-
stalled software, is the original source package file.

The --recompile option is normally used when a previously installed package needs to be recom-
piled. --recompile comes in handy when software needs to be compiled against a new version of the
kernel.

Here's what RPM displays during a --recompile:

rpmbuild --recompile cdplayer-1.0-1.src.rpm

Installing cdplayer-1.0-1.src.rpm
* Package: cdplayer
Executing(%prep):
…
+ exit 0
Executing(%build):
…
+ exit 0
Executing(%install):
…
+ exit 0
Executing(%check):
…
+ exit 0
Executing(%doc):
…
+ exit 0

#

The very first line shows RPM installing the source package. After that are ordinary executions of
the %prep, %build, and %install sections of the spec file.

Since rpm -i or rpm -U are not being used to install the software, the RPM database is not updated
during a --recompile. This means that doing a --recompile on an already-installed package may res-
ult in problems down the road, when RPM is used to upgrade or verify the package.

rpmbuild --rebuild — What Does it Do?
Package builders, particularly those that create packages for multiple architectures, often need to
build their packages starting from the original sources. The --rebuild option does this, starting from
a source package file. Here is the list of steps it performs:

rpmbuild Command Reference

156

• Install the specified source package file.

• Unpack the original sources.

• Build the software.

• Install the software.

• Run the tests.

• Create a binary package file.

• Remove the software's build directory tree and run the %clean script.

Unlike the --recompile option, --rebuild cleans up after itself. The other difference between the two
commands is the fact that --rebuild also creates a binary package file. The only remnants of a -
-rebuild are the original source package, the newly installed software, and a new binary package
file.

Package builders find this command especially handy, as it allows them to create new binary pack-
ages using one command, with no additional cleanups required. There are several times when -
-rebuild is normally used:

• When the build environment (eg. compilers, libraries, etc.) has changed.

• When binary packages for a different architecture are to be built.

Here's an example of the --rebuild option in action:

rpmbuild --rebuild cdplayer-1.0-1.src.rpm

Installing cdplayer-1.0-1.src.rpm
* Package: cdplayer
Executing(%prep):
…
+ exit 0
Executing(%build):
…
+ exit 0
Executing(%install):
…
+ exit 0
Executing(%check):
…
+ exit 0
Executing(%doc):
…
+ exit 0
Binary Packaging: cdplayer-1.0-1
…
Executing(%clean):
…
+ exit 0
Executing(--clean):
…
+ exit 0

#

The very first line shows RPM installing the source package. The lines after that are ordinary execu-
tions of the %prep, %build, %install and %check (if any) sections of the spec file. Next, a binary

rpmbuild Command Reference

157

package file is created. Finally, the spec file's %clean section (if one exists) is executed. The
cleanup of the software's build directory takes place, just as if the --clean option had been specified.

That completes our overview of the commands used to build packages with RPM. In the next
chapter, we'll look at the various macros that are available and how they can make life easier for the
package builder.

rpmbuild Command Reference

158

Chapter 13. Inside the Spec File
In this chapter, we're going to cover the spec file in detail. There are a number of different types of
entries that comprise a spec file, and every one will be documented here. The different types of
entries are:

• Comments — Human-readable notes ignored by RPM.

• Tags — Define data.

• Scripts — Contain commands to be executed at specific times.

• Macros — A method of executing multiple commands easily.

• The %files list — A list of files to be included in the package.

• Directives — Used in the %files list to direct RPM to handle certain files in a specific way.

• Conditionals — Permit operating system- or architecture-specific preprocessing of the spec file.

Let's start by looking at comments.

Comments: Notes Ignored by RPM
Comments are a way to make RPM ignore a line in the spec file. The contents of a comment line are
entirely up to the person writing the spec file.

To create a comment, enter an octothorp (#) at the start of the line. Any text following the comment
character will be ignored by RPM. Here's an example comment:

This is the spec file for playmidi 2.3...

Comments can be placed in any section of the spec file. Note that macros are expanded everywhere,
so with multiline macros which would only have the first line commented also escape the percent
(%) character:

%%configure

Tags: Data Definitions
Looking at a spec file, the first thing you'll see are a number of lines, all following the same basic
format:

<something>:<something-else>

The <something> is known as a "tag", because it is used by RPM to name or tag some data. The

159

tag is separated from its associated data by a colon. The data is represented by the
<something-else> above. Tags are grouped together at the top of the spec file, in a section
known as the preamble. Here's an example of a tag and its data:

Vendor: White Socks Software, Inc.

In this example, the tag is "Vendor". Tags are not case-sensitive — they may be all uppercase, all
lowercase, or anything in-between. The Vendor tag is used to define the name of the organization
producing the package. The data in this example is "White Socks Software, Inc.". Therefore, RPM
will store White Socks Software, Inc. as the vendor of the package.

Note, also, that spacing between the tag, the colon, and the data is unimportant. Given this, and the
case-insensitivity of the tag, each of the following lines are equivalent to the one above:

VeNdOr : White Socks Software, Inc.
vendor:White Socks Software, Inc.
VENDOR : White Socks Software, Inc.

The bottom line is that you can make tag lines as neat or as ugly as you like — RPM won't mind
either way. Note, however, the tag's data may need to be formatted in a particular fashion. If there
are any such restrictions, we'll mention them. Below, we've grouped tags of similar functions togeth-
er for easier reference, starting with the tags that are used to create the package name.

Package Naming Tags
The following tags are used by RPM to produce the package's final name. Since the name is always
in the format:

<name>-<version>-<release>

it's only natural that the three tags are known as name, version, and release.

The name Tag

The name tag is used to define the name of the software being packaged. In most (if not all) cases,
the name used for a package should be identical in spelling and case to the software being packaged.
The name cannot contain any whitespace: If it does, RPM will only use the first part of the name (up
to the first space). Therefore, if the name of the software being packaged is cdplayer, the name tag
should be something like:

Name: cdplayer

The version Tag

The version tag defines the version of the software being packaged. The version specified should be

Inside the Spec File

160

as close as possible to the format of the original software's version. In most cases, there should be no
problem specifying the version just as the software's original developer did. However, there is a re-
striction. There can be no dashes in the version. If you forget, RPM will remind you:

rpmbuild -ba cdplayer-1.0.spec

* Package: cdplayer
Illegal '-' char in version: 1.0-a

#

Spaces in the version will also cause problems, in that anything after the first space will be ignored
by RPM. Bottom line: Stick with alphanumeric characters and periods, and you'll never have to
worry about it. Here's a sample version tag:

Version: 1.2

The release Tag

The release tag can be thought of as the package's version. The release is traditionally an integer —
for example, when a specific piece of software at a particular version is first packaged, the release
should be "1". If it is necessary to repackage that software at the same version, the release should be
incremented. When a new version of the software becomes available, the release should drop back
to "1" when it is first packaged.

Note that we used the word "traditionally", above. The only hard and fast restriction to the release
format is that there can be no dashes in it. Be aware that if you buck tradition, your users may not
understand what your release means.

It is up to the package builder to determine which build represents a new release and to update the
release manually. Here is what a typical release tag might look like:

Release: 5

Descriptive Tags
These tags provide information primarily for people who want to know a bit more about the pack-
age, and who produced it. They are part of the package file, and most of them can be seen by issuing
an rpm -qi command.

The %description Tag

The %description tag is used to provide an in-depth description of the packaged software. The de-
scription should be several sentences describing, to an uninformed user, what the software does.

The %description tag is a bit different than the other tags in the preamble. For one, it starts with a
percent sign. The other difference is that the data specified by the %description tag can span more
than one line. In addition, a primitive formatting capability exists. If a line starts with a space, that
line will be displayed verbatim by RPM. Lines that do not start with a space are assumed to be part
of a paragraph and will be formatted by RPM. It's even possible to mix and match formatted and un-
formatted lines. Here are some examples:

Inside the Spec File

161

%description
It slices! It dices! It's a CD player app that can't be beat. By using
the resonant frequency of the CD itself, it is able to simulate 20X
oversampling. This leads to sound quality that cannot be equaled with
more mundane software...

The example above contains no explicit formatting. RPM will format the text as a single paragraph,
breaking lines as needed.

%description
It slices!
It dices!
It's a CD player app that can't be beat.
By using the resonant frequency of the CD itself, it is able to simulate
20X oversampling. This leads to sound quality that cannot be equaled with
more mundane software...

In this example, the first three lines will be displayed by RPM, verbatim. The remainder of the text
will be formatted by RPM. The text will be formatted as one paragraph.

%description
It slices!
It dices!
It's a CD player app that can't be beat.

By using the resonant frequency of the CD itself, it is able to simulate
20X oversampling. This leads to sound quality that cannot be equaled with
more mundane software...

Above, we have a similar situation to the previous example, in that part of the text is formatted and
part is not. However, the blank line separates the text into two paragraphs.

The summary Tag

The summary tag is used to define a one-line description of the packaged software. Unlike
%description, summary is restricted to one line. RPM uses it when a succinct description of the
package is needed. Here is an example of a summary line:

Summary: A CD player app that rocks!

The license Tag

The license tag is used to define the license terms applicable to the software being packaged. This
tag is also known as the copyright tag. In many cases, this might be nothing more than "GPL", for
software distributed under the terms of the GNU General Public License, or something similar. For
example:

Inside the Spec File

162

License: GPL

The distribution Tag

The distribution tag is used to define a group of packages, of which this package is a part. Since
Red Hat is in the business of producing a group of packages known as a Linux distribution, the
name stuck. For example, if a suite of applications known as "Doors '95" were produced, each pack-
age that is part of the suite would define its distribution line like this:

Distribution: Doors '95

The icon Tag

The icon tag is used to name a file containing an icon representing the packaged software. The file
may be in either GIF or XPM format, although XPM is preferred. In either case, the background of
the icon should be transparent. The file should be placed in RPM's SOURCES directory prior to per-
forming a build, so no path is needed.

The icon is normally used by graphically-oriented front ends to RPM. RPM itself doesn't use the
icon, but it's stored in the package file and retained in RPM's database after the package is installed.
An example icon tag might look like:

Icon: foo.xpm

The vendor Tag

The vendor tag is used to define the name of the entity that is responsible for packaging the soft-
ware. Normally, this would be the name of an organization. Here's an example:

Vendor: White Socks Software, Inc.

The url Tag

The url tag is used to define a Uniform Resource Locator that can be used to obtain additional in-
formation about the packaged software. At present, RPM doesn't actively make use of this tag. The
data is stored in the package however, and will be written into RPM's database when the package is
installed. It's only a matter of time before some web-based RPM adjunct makes use of this informa-
tion, so make sure you include URLs! Something like this is all you'll need:

URL: http://www.gnomovision.com/cdplayer.html

Inside the Spec File

163

The group Tag

The group tag is used to group packages together by the types of functionality they provide. The
group specification looks like a path and is similar in function, in that it specifies more general
groupings before more detailed ones. For example, a package containing a text editor might have the
following group:

Group: Applications/Editors

In this example, the package is part of the Editors group, which is itself a part of the Applica-
tions group. Likewise, a spreadsheet package might have this group:

Group: Applications/Spreadsheets

This group tag indicates that under the Applications group, we would find Editors and
Spreadsheets, and probably some other subgroups as well.

How is this information used? It's primarily meant to permit graphical front-ends to RPM, to display
packages in a hierarchical fashion. Of course, in order for groups to be as effective as possible, it's
necessary for all package builders to be consistent in their groupings. In the case of packages for
Linux, Red Hat has the definitive list. Therefore, Linux package builders should give serious consid-
eration to using Red Hat's groups. The current group hierarchy is installed with every copy of RPM,
and is available in the RPM sources as well. Check out the file groups in RPM's documentation
directory (normally /usr/share/doc/rpm-<version>), or in the top-level source directory.

The packager Tag

The packager tag is used to hold the name and contact information for the person or persons who
built the package. Normally, this would be the person that actually built the package, or in a larger
organization, a public relations contact. In either case, contact information such as an e-mail address
or phone number should be included, so customers can send either money or hate mail, depending
on their satisfaction with the packaged software. Here's an example of a packager tag:

Packager: Fred Foonly <fred@gnomovision.com>

Dependency Tags
One RPM feature that's been recently implemented is a means of ensuring that if a package is in-
stalled, the system environment has everything the package requires in order to operate properly.
Likewise, when an installed package is erased RPM can make sure no other package relies on the
package being erased. This dependency capability can be very helpful when end users install and
erase packages on their own. It makes it more difficult for them to paint themselves into a corner,
package-wise.

However, in order for RPM to be able to take more than basic dependency information into account,
the package builder must add the appropriate dependency information to the package. This is done
by using the following tags. Note, however, that adding dependency information to a package re-
quires some forethought. For additional information on RPM's dependency processing, please re-

Inside the Spec File

164

view Chapter 14, Adding Dependency Information to a Package.

The provides Tag

The provides tag is used to specify a virtual package that the packaged software makes available
when it is installed. Normally, this tag would be used when different packages provide equivalent
services. For example, any package that allows a user to read mail might provide the mail-reader
virtual package. Another package that depends on a mail reader of some sort, could require the mail-
reader virtual package. It would then install without dependency problems, if any one of several
mail programs were installed. Here's what a provides tag might look like:

Provides: mail-reader

The requires Tag

The requires tag is used to alert RPM to the fact that the package needs to have certain capabilities
available in order to operate properly. These capabilities refer to the name of another package, or to
a virtual package provided by one or more packages that use the provides tag. When the requires
tag references a package name, version comparisons may also be included by following the package
name with <, >, =, >=, or <=, and a version specification. To get even more specific, a package's re-
lease may be included as well. Here's a requires tag in action, with a specific version requirement:

Requires: playmidi = 2.3

If the Requires tag needs to perform a comparison against an epoch number defined with the epoch
tag (described below), then the proper format would be:

Requires: playmidi >= 4:2.3

The conflicts Tag

The conflicts tag is the logical complement to the requires tag. The requires tag is used to specify
what packages must be present in order for the current package to operate properly. The conflicts
tag is used to specify what packages cannot be installed if the current package is to operate properly.

The conflicts tag has the same format as the requires tag — namely, the tag is followed by a real or
virtual package name. Like requires, the conflicts tag also accepts version and release specifica-
tions:

Conflicts: playmidi = 2.3-1

If the conflicts tag needs to perform a comparison against an epoch number defined with the epoch
tag (described below), then the proper format would be:

Inside the Spec File

165

Conflicts: playmidi = 4:

The epoch Tag

The epoch tag is another part of RPM's dependency and upgrade processing. It is also known as the
serial tag. The need for it is somewhat obscure, but goes something like this:

1. The package being built (call it package A) uses a version numbering scheme sufficiently ob-
scure so that RPM cannot determine if one version is older or newer than another version.

2. Another package (package B) requires that package A be installed. More specifically, it re-
quires RPM to compare package A's version against a specified minimum (or maximum) ver-
sion.

Since RPM is unable to compare package A's version against the version specified by package B,
there is no way to determine if package B's dependency requirements can be met. What to do?

The epoch tag provides a way to get around this tricky problem. By specifying a simple integer
epoch number for each version, you are, in essence, directing how RPM interprets the relative age of
the package. The key point to keep in mind is that in order for this to work, a unique epoch number
must be defined for each version of the software being packaged. In addition, the epoch number
must increment along with the version. Finally, the package that requires the epoched software
needs to specify its version requirements in terms of the epoch number.

Does it sound like a lot of trouble? You're right! If you find yourself in the position of needing to
use this tag, take a deep breath and seriously consider changing the way you assign version num-
bers. If you're packaging someone else's software, perhaps you can convince them to make the
change. Chances are, if RPM can't figure out the version number, most people can't, either! An ex-
ample epoch tag would look something like this:

Epoch: 4

Note that RPM considers a package with an epoch number as newer than a package without an
epoch number.

The autoreqprov, autoreq, and autoprov Tags

The autoreqprov, autoreq, and autoprov tags are used to control the automatic dependency pro-
cessing performed when the package is being built. Normally, as each package is built, the follow-
ing steps are performed:

• All executable programs and libraries being packaged are analyzed to determine their shared lib-
rary requirements as well as interpreters. These requirements are automatically added to the
package's requirements.

• The soname of each shared library being packaged is automatically added to the package's list of
"provides" information.

• The required modules for all Perl scripts and modules being packaged are automatically added to
the package's requirements.

Inside the Spec File

166

By doing this, RPM reduces the need for package builders to manually add dependency information
to their packages. However, there are times when RPM's automatic dependency processing may not
be desirable. In those cases the autoreqprov, autoreq, and autoprov tags can be used to disable
automatic dependency processing altogether (autoreqprov), for requirements only (autoreq), or for
"provides" only (autoprov).

To disable automatic dependency processing both for requirements and "provides", add the follow-
ing line:

AutoReqProv: no

To disable automatic processing of requirements, add the following line:

AutoReq: no

To disable automatic processing of "provides", add the following line:

AutoProv: no

(The number zero may be used instead of no) Although RPM defaults to performing automatic de-
pendency processing, the effect of the autoreqprov, autoreq, and autoprov tags can be reversed by
changing no to yes. (The number one may be used instead of yes)

Architecture- and Operating System-Specific Tags
As RPM gains in popularity, more people are putting it to work on different types of computer sys-
tems. While this would not normally be a problem, things start to get a little tricky when one of the
following two situations becomes commonplace:

1. A particular operating system is ported to several different hardware platforms, or architec-
tures.

2. A particular architecture runs several different operating systems.

The real bind hits when RPM is used to package software for several of these different system envir-
onments. Without methods of controlling the build process based on architecture and operating sys-
tem, package builders that develop software for more than one architecture or operating system will
have a hard time indeed. The only alternative would be to maintain parallel RPM build environ-
ments and accept all the coordination headaches that would entail.

Fortunately, RPM makes it all easier than that. With the following tags, it's possible to support pack-
age building under multiple environments, all from a single set of sources, patches, and a single spec
file. For a more complete discussion of multi-architecture package building, please see Chapter 19,
Building Packages for Multiple Architectures and Operating Systems .

The excludearch Tag

Inside the Spec File

167

The excludearch tag directs RPM to ensure that the package does not attempt to build on the ex-
cluded architecture(s). The reasons for preventing a package from building on a certain architecture
might include:

• The software has not yet been ported to the excluded architecture.

• The software would serve no purpose on the excluded architecture.

An example of the first case might be that the software was designed based on the assumption that
an integer is a 32-bit quantity. Obviously, this assumption is not valid on a 64-bit processor.

In the second case, software that depended on or manipulated low-level features of a given architec-
ture, should be excluded from building on a different architecture. Assembly language programs
would fall into this category.

One or more architectures may be specified after the excludearch tag, separated by either spaces or
commas. Here is an example:

ExcludeArch: sparc alpha

In this example, RPM would not attempt to build the package on either the Sun SPARC or Digital
Alpha/AXP architectures. The package would build on any other architectures, however. If a build
is attempted on an excluded architecture, the following message will be displayed, and the build will
fail:

rpmbuild -ba cdplayer-1.0.spec

Arch mismatch!
cdplayer-1.0.spec doesn't build on this architecture

#

Note that if your goal is to ensure that a package will only build on one architecture, then you
should use the exclusivearch tag.

The exclusivearch Tag

The exclusivearch tag is used to direct RPM to ensure the package is only built on the specified ar-
chitecture(s). The reasons for this are similar to the those mentioned in the section on the ex-
cludearch tag above. However, the exclusivearch tag is useful when the package builder needs to
ensure that only the specified architectures will build the package. This tag ensures that no future ar-
chitectures will mistakenly attempt to build the package. This would not be the case if the ex-
cludearch tag were used to specify every architecture known at the time the package is built.

The syntax of the exclusivearch tag is identical to that of excludearch:

ExclusiveArch: sparc alpha

In this example, the package will only build on a Sun SPARC or Digital Alpha/AXP system.

Inside the Spec File

168

Note that if your goal is to ensure that a package will not build on specific architectures, then you
should use the excludearch tag.

The excludeos Tag

The excludeos tag is used to direct RPM to ensure that the package does not attempt to build on the
excluded operating system(s). This is usually necessary when a package is to be built on more than
one operating system, but it is necessary to keep a particular operating system from attempting a
build.

Note that if your goal is to ensure that a package will only build on one operating system, then you
should use the exclusiveos tag. Here's a sample excludeos tag:

ExcludeOS: linux irix

The exclusiveos Tag

The exclusiveos tag has the same syntax as excludeos, but it has the opposite logic. The exclusiveos
tag is used to denote which operating system(s) should only be be permitted to build the package.
Here's exclusiveos in action:

ExclusiveOS: linux

Note that if your goal is to ensure that a package will not build on a specific operating system, then
you should use the excludeos tag.

Directory-related Tags
A number of tags are used to specify directories and paths that are used in various phases of RPM's
build and install processes. There's not much more to say collectively about these tags, so let's dive
right in and look them over.

The prefix Tag

The prefix tag is used when a relocatable package is to be built. A relocatable package can be in-
stalled normally or can be installed in a user-specified directory, by using RPM's --prefix install-
time option. The data specified after the prefix tag should be the part of the package's path that may
be changed during installation. For example, if the following prefix line was included in a spec file:

Prefix: /opt

and the following file was specified in the spec file's %files list:

/opt/blather/foonly

Inside the Spec File

169

then the file foonly would be installed in /opt/blather if the package was installed normally.
It would be installed in /usr/local/blather if the package was installed with the --prefix /
usr/local option.

For more information about creating relocatable packages, see Chapter 15, Making a Relocatable
Package.

The buildroot Tag

The buildroot tag is used to define an alternate build root. The name is a bit misleading, as the build
root is actually used when the software is installed during the build process. In order for a build root
to be defined and actually used, a number of issues must be taken into account. These issues are
covered in Chapter 16, Making a Package That Can Build Anywhere. This is what a buildroot tag
would look like:

BuildRoot: /tmp/cdplayer

The buildroot tag can be overridden at build-time by using the --buildroot command-line option.

Source and Patch Tags
In order to build and package software, RPM needs to know where to find the original sources. But
it's not quite that simple. There might be more than one set of sources that need to be part of a par-
ticular build. In some cases, it might be necessary to prevent some sources from being packaged.

And then there is the matter of patches. It's likely that changes will need to be made to the sources,
so it's necessary to specify a patch file. But the same issues that apply to source specifications are
also applicable to patches. There might be more than one set of patches required.

The tags that follow are crucial to RPM, so it pays to have a firm grasp of how they are used.

The source Tag

The source tag is central to nearly every spec file. Although it has only one piece of data associated
with it, it actually performs two functions:

1. It shows where the software's developer has made the original sources available.

2. It gives RPM the name of the original source file.

While there is no hard and fast rule, for the first function, it's generally considered best to put this in-
formation in the form of a Uniform Resource Locator (URL). The URL should point directly to the
source file itself. This is due to the source tag's second function.

As mentioned above, the source tag also needs to direct RPM to the source file on the build system.
How does it do this? There's only one requirement, and it is ironclad: The source filename must be
at the end of the line as the final element in a path. Here's an example:

Source: ftp://ftp.gnomovision.com/pub/cdplayer-1.0.tgz

Given this source line, RPM will search its SOURCES directory for cdplayer-1.0.tgz.

Inside the Spec File

170

1 There is also an "international" version that may be used in non-US countries. See Appendix G, An Introduction to PGP.

Everything prior to the filename is ignored by RPM. It's there strictly for any interested humans.

A spec file may contain more than one source tag. This is necessary for those cases where the soft-
ware being packaged is contained in more than one source file. However, the source tags must be
uniquely identified. This is done by appending a number to the end of the tag itself. In fact, RPM
does this internally for the first source tag in a spec file, in essence turning it into source0. There-
fore, if a package contains two source files, they may either be specified as:

Source: blather-4.5.tar.gz
Source1: bother-1.2.tar.gz

or as:

Source0: blather-4.5.tar.gz
Source1: bother-1.2.tar.gz

Either approach may be used. The choice is yours.

The nosource Tag

The nosource tag is used to direct RPM to omit one or more source files from the source package.
Why would someone want to go to the trouble of specifying a source file, only to exclude it? The
reasons for this can be varied, but let's look at one example: The software known as Pretty Good Pri-
vacy, or PGP.

PGP contains encryption routines of such high quality that the United States government restricts
their export. 1 While it would be nice to create a PGP package file, the resulting package could not
legally be transferred between the U.S. and other countries, or vice-versa.

However, what if all files other than the original source, were packaged using RPM? Well, a binary
package made without PGP would be of little use, but what about the source package? It would con-
tain the spec file, maybe some patches, and perhaps even an icon file. Since the controversial PGP
software was not a part of the source package, this sanitized source package could be downloaded
legally in any country. The person that downloaded a copy could then go about legally obtaining the
PGP sources themselves, place them in RPM's SOURCES directory, and create a binary package.
They wouldn't even need to change the nosource tag. One rpmbuild -ba command later, and the
user would have a perfectly usable PGP binary package file.

Since there may be more than one source tag in a spec file, the format of the nosource tag is as fol-
lows:

nosource: <src-num>, <src-num>…<src-num>

The <src-num> represents the number following the source tag. If there is more than one number
in the list, they may be separated by either commas or spaces. For example, consider a package con-
taining the following source tags:

Inside the Spec File

171

source: blather-4.5.tar.gz
Source1: bother-1.2.tar.gz
source2: blather-lib-4.5.tar.gz
source3: bother-lib-1.2.tar.gz

If the source files for blather and blather-lib were not to be included in the package, the following
nosource line could be added:

NoSource: 0, 3

What about that 0? Keep in mind that the first unnumbered source tag in a spec file is automatically
numbered 0 by RPM.

The patch Tag

The patch tag is used to identify which patches are associated with the software being packaged.
The patch files are kept in RPM's SOURCES directory, so only the name of the patch file should be
specified. Here is an example:

Patch: cdp-0.33-fsstnd.patch

There are no hard and fast requirements for naming the patch files, but traditionally the filename
starts with the software name and version, separated by dashes. The next part of the patch file name
usually includes one or more words indicating the reason for the patch. In our example above, the
patch file contains changes necessary to bring the software into compliance with the Linux File Sys-
tem Standard, hence the fsstnd magic incantation.

RPM processes patch tags the same way it does source tags. Therefore, it's acceptable to use a Uni-
form Resource Locator (URL) on a patch line, too.

A spec file may contain more than one patch tag. This is necessary for those cases where the soft-
ware being packaged requires more than one patch. However, the patch tags must be uniquely iden-
tified. This is done by appending a number to the end of the tag itself. In fact, RPM does this intern-
ally for the first patch tag in a spec file, in essence turning it into patch0. Therefore, if a package
contains three patches, the following two methods of specifying them are equivalent:

Patch: blather-4.5-bugfix.patch
Patch1: blather-4.5-config.patch
Patch2: blather-4.5-somethingelse.patch

This is the same as:

Patch0: blather-4.5-bugfix.patch
Patch1: blather-4.5-config.patch
Patch2: blather-4.5-somethingelse.patch

Inside the Spec File

172

2 Described in the section called “ --test — Create, Save Build Scripts For Review ”.

Either approach may be used, but the second method looks nicer.

The nopatch Tag

The nopatch tag is similar to the nosource tag discussed earlier. Just like the nosource tag, the no-
patch tag is used to direct RPM to omit something from the source package. In the case of
nosource, that "something" was one or more sources. For the nopatch tag, the "something" is one
or more patches.

Since each patch tag in a spec file must be numbered, the nopatch tag uses those numbers to spe-
cify which patches are not to be included in the package. The nopatch tag is used in this manner:

NoPatch: 2 3

In this example, the source files specified on the source2 and source3 lines are not to be included in
the build.

This concludes our study of RPM's tags. In the next section, we'll look at the various scripts that
RPM uses to build, as well as to install, and erase, packages.

Scripts: RPM's Workhorse
The scripts that RPM uses to control the build process are among the most varied and interesting
parts of the spec file. Many spec files also contain scripts that perform a variety of tasks whenever
the package is installed or erased.

The start of each script is denoted by a keyword. For example, the %build keyword marks the start
of the script RPM will execute when building the software to be packaged. It should be noted that,
in the strictest sense of the word, these parts of the spec file are not scripts. For example, they do not
start with the traditional invocation of a shell. However, the contents of each script section are
copied into a file and executed by RPM as a full-fledged script. This is part of the power of RPM:
Anything that can be done in a script can be done by RPM.

Let's start by looking at the scripts used during the build process.

Build-time Scripts
The scripts that RPM uses during the building of a package follow the steps known to every soft-
ware developer:

• Unpacking the sources.

• Building the software.

• Installing the software.

• Cleaning up.

Although each of the scripts perform a specific function in the build process, they share a common
environment. Using RPM's --test option 2 , we can see the common portion of each script. In the fol-
lowing example, we've taken the cdplayer package, issued an rpmbuild -ba --test cdplayer-
1.0-1.spec, and viewed the script files left in RPM's temporary directory. This section (with the ap-
propriate package-specific values) is present in every script RPM executes during a build:

Inside the Spec File

173

#!/bin/sh -e
Script generated by rpm

RPM_SOURCE_DIR="/usr/src/redhat/SOURCES"
RPM_BUILD_DIR="/usr/src/redhat/BUILD"
RPM_DOC_DIR="/usr/doc"
RPM_OPT_FLAGS="-O2 -m486 -fno-strength-reduce"
RPM_ARCH="i386"
RPM_OS="Linux"
RPM_ROOT_DIR="/tmp/cdplayer"
RPM_BUILD_ROOT="/tmp/cdplayer"
RPM_PACKAGE_NAME="cdplayer"
RPM_PACKAGE_VERSION="1.0"
RPM_PACKAGE_RELEASE="1"
set -x

umask 022

As we can see, the script starts with the usual invocation of a shell (in this case, the Bourne shell).
There are no arguments passed to the script. Next, a number of environment variables are set. Here's
a brief description of each one:

• RPM_SOURCE_DIR — This environment variable gets its value from the rpmrc file entry sour-
cedir, which in turn can get part of its value from the topdir entry. It is the path RPM will pre-
pend to the file, specified in the source tag line.

• RPM_BUILD_DIR — This variable is based on the builddir rpmrc file entry, which in turn can
get part of its value from the topdir entry. This environment variable translates to the path of
RPM's build directory, where most software will be unpacked and built.

• RPM_DOC_DIR — The value of this environment variable is based on the defaultdocdir rpm-
rc file entry. Files marked with the %doc directive can be installed in a subdirectory of de-
faultdocdir. For more information on the %doc directive, refer to the section called “The %doc
Directive”.

• RPM_OPT_FLAGS — This environment variable gets its value from the optflags rpmrc file
entry. It contains options that can be passed on to the build procedures of the software being
packaged. Normally this means either a configuration script or the make command itself.

• RPM_ARCH — As one might infer from the example above, this environment variable contains a
string describing the build system's architecture.

• RPM_OS — This one contains the name of the build system's operating system.

• RPM_BUILD_ROOT — This environment variable is used to hold the "build root", into which
the newly built software will be installed. If no explicit build root has been specified (either by
command line option, spec file tag line, or rpmrc file entry), this variable will be null.

• RPM_PACKAGE_NAME — This environment variable gets its value from the name tag line in
the package's spec file. It contains the name of the software being packaged.

• RPM_PACKAGE_VERSION — The version tag line is the source of this variable's translation.
Predictably, this environment variable contains the software's version number.

• RPM_PACKAGE_RELEASE — This environment variable contains the package's release num-
ber. Its value is obtained from the release tag line in the spec file.

All of these environment variables are set for your use, to make it easier to write scripts that will do

Inside the Spec File

174

the right thing even if the build environment changes.

The script also sets an option that causes the shell to print out each command, complete with expan-
ded arguments. Finally, the default permissions are set. Past this point, the scripts differ. Let's look
at the scripts in the order they are executed.

The %prep Script

The %prep script is the first script RPM executes during a build. Prior to the %prep script, RPM
has performed preliminary consistency checks, such as whether the spec file's source tag points to
files that actually exist. Just prior to passing control over to the %prep script's contents, RPM
changes directory into RPM's build area, which, by default, is /usr/src/redhat/BUILD.

At that point, it is the responsibility of the %prep script to:

• Create the top-level build directory.

• Unpack the original sources into the build directory.

• Apply patches to the sources, if necessary.

• Perform any other actions required to get the sources in a ready-to-build state.

The first three items on this list are common to the vast majority of all software being packaged. Be-
cause of this, RPM has two macros that greatly simplify these routine functions. More information
on RPM's %setup and %patch macros can be found in the section called “Macros: Helpful Short-
hand for Package Builders”.

The last item on the list can include creating directories or anything else required to get the sources
in a ready-to-build state. As a result, a %prep script can range from one line invoking a single
%setup macro, to many lines of tricky shell programming.

The %build Script

The %build script picks up where the %prep script left off. Once the %prep script has gotten
everything ready for the build, the %build script is usually somewhat anti-climactic — normally in-
voking make, maybe a configuration script, and little else.

Like %prep before it, the %build script has the same assortment of environment variables to draw
on. Also, like %prep, %build changes directory into the software's top-level build directory
(located in RPM_BUILD_DIR, or usually called <name>-<version>).

Unlike %prep, there are no macros available for use in the %build script. The reason is simple:
Either the commands required to build the software are simple (such as a single make command), or
they are so unique that a macro wouldn't make it easier to write the script.

The %install Script

The environment in which the %install script executes is identical to the other scripts. Like the oth-
er scripts, the %install script's working directory is set to the software's top-level directory.

As the name implies, it is this script's responsibility to do whatever is necessary to actually install
the newly built software. In most cases, this means a single make install command, or a few com-
mands to copy files and create directories.

The %check Script

The environment in which the %check script executes is identical to the other scripts. Like the other
scripts, the %check script's working directory is set to the software's top-level directory.

Inside the Spec File

175

3 One popular hack to make spec files containing the %check script "work" with RPM versions older than 4.2 roughly similarly as in newer
versions is to include it immediately after the %install script in the spec file and append "|| :" to it, like:

%check || :

4 Keep in mind that this command in a %clean script can wreak havoc if used with a build root of, say, /. the section called “Using -
-buildroot Can Bite You!” discusses this in more detail.
5 Or it will be 1, once the package is completely installed. Remember, the number is based on the number of packages installed after the cur-
rent package's install or erase has completed.

This script's primary function is to run the test suite of the built software to ensure that the binaries
work correctly. Some typical commands to run in this script are make test or make check.

The %check script is available in RPM version 4.2 and newer. 3

The %clean Script

The %clean script, as the name implies, is used to clean up the software's build directory tree. RPM
normally does this for you, but in certain cases (most notably in those packages that use a build root)
you'll need to include a %clean script.

As usual, the %clean script has the same set of environment variables as the other scripts we've
covered here. Since a %clean script is normally used when the package is built in a build root, the
RPM_BUILD_ROOT environment variable is particularly useful. In many cases, a simple

rm -rf $RPM_BUILD_ROOT

will suffice. 4

Install/Erase-time Scripts
The other type of scripts that are present in the spec file are those that are only used when the pack-
age is either installed or erased. There are four scripts, each one meant to be executed at different
times during the life of a package:

• Before installation.

• After installation.

• Before erasure.

• After erasure.

Unlike the build-time scripts, there is little in the way of environment variables for these scripts. The
only environment variable available is RPM_INSTALL_PREFIX, and that is only set if the package
uses an installation prefix.

Unlike the build-time scripts, there is an argument defined. The sole argument to these scripts, is a
number representing the number of instances of the package currently installed on the system, after
the current package has been installed or erased. Sound tricky? It really isn't. Here's an example:

Assume that a package, called blather-1.0, is being installed. No previous versions of blather have
been installed. Since the software is being installed, only the %pre and %post scripts are executed.
The argument passed to these scripts will be 1, since the the number of blather packages installed is
1. 5

Inside the Spec File

176

Continuing our example, a new version of the blather package, version 1.3, is now available. Clearly
it's time to upgrade. What will the scripts' values be during the upgrade? As blather-1.3 is installing,
its %pre and %post scripts will have an argument equal to 2 (1 for version 1.0 already installed,
plus 1 for version 1.3 being installed). As the final part of the upgrade, it's then time to erase blather
version 1.0. As the package is being removed, its %preun and %postun scripts are executed. Since
there will be only one blather package (version 1.3) installed after version 1.0 is erased, the argu-
ment passed to version 1.0's scripts is 1.

To finally bring an end to this example, we've decided to erase blather 1.3. We just don't need it
anymore. As the package is being erased, its %preun and %postun scripts will be executed. Since
there will be no blather packages installed once the erase completes, the argument passed to the
scripts is 0.

With all that said, of what possible use would this argument be? Well, it has two very interesting
properties:

1. When the first version of a package is installed, its %pre and %post scripts will be passed an
argument equal to 1.

2. When the last version of a package is erased, its %preun and %postun scripts will be passed
an argument equal to 0.

Based on these properties, it's trivial to write an install-time script that can take certain actions in
specific circumstances. Usually, the argument is used in the %preun or %postun scripts to perform
a special task when the last instance of a package is being erased.

What is normally done during these scripts? The exact tasks may vary, but in general, the tasks are
any that need to be performed at these points in the package's existence. One very common task is to
run ldconfig when shared libraries are installed or removed. But that's not the only use for these
scripts. It's even possible to use the scripts to perform tests to ensure the package install/erasure
should proceed.

Since each of these scripts will be executing on whatever system installs the package, it's necessary
to choose the script's choice of tools carefully. Unless you're sure a given program is going to be
available on all the systems that could possibly install your package, you should not use it in these
scripts.

The %pre Script

The %pre script executes just before the package is to be installed. It is the rare package that re-
quires anything to be done prior to installation; none of the 350 packages that comprise Red Hat
Linux Linux 4.0 make use of it.

The %post Script

The %post script executes after the package has been installed. One of the most popular reasons a
%post script is needed is to run ldconfig to update the list of available shared libraries after a new
one has been installed. Of course, other functions can be performed in a %post script. For example,
packages that install shells use the %post script to add the shell name to /etc/shells.

If a package uses a %post script to perform some function, quite often it will include a %postun
script that performs the inverse of the %post script, after the package has been removed.

The %preun Script

If there's a time when your package needs to have one last look around before the user erases it, the
place to do it is in the %preun script. Anything that a package needs to do immediately prior to
RPM taking any action to erase the package, can be done here.

The %postun Script

Inside the Spec File

177

The %postun script executes after the package has been removed. It is the last chance for a package
to clean up after itself. Quite often, %postun scripts are used to run ldconfig to remove newly
erased shared libraries from ld.so.cache.

Verification-Time Script — The %verifyscript Script
The %verifyscript executes whenever the installed package is verified by RPM's verification com-
mand. The contents of this script is entirely up to the package builder, but in general the script
should do whatever is necessary to verify the package's proper installation. Since RPM automatic-
ally verifies the existence of a package's files, along with other file attributes, the %verifyscript
should concentrate on different aspects of the package's installation. For example, the script may en-
sure that certain configuration files contain the proper information for the package being verified:

for n in ash bsh; do
echo -n "Looking for $n in /etc/shells... "
if ! grep "^/bin/${n}\$" /etc/shells > /dev/null; then

echo "missing"
echo "${n} missing from /etc/shells" >&2

else
echo "found"

fi
done

In this script, the config file /etc/shells, is checked to ensure that it has entries for the shells
provided by this package.

It is worth noting that the script sends informational and error messages to stdout, and error mes-
sages only to stderr. Normally RPM will only display error output from a verification script; the out-
put sent to stdout is only displayed when the verification is run in verbose mode.

Macros: Helpful Shorthand for Package
Builders

RPM does not support macros in the sense of ad-hoc sequences of commands being defined as a
macro and executed by simply referring to the macro name.

However, there are two parts of RPM's build process that are fairly constant from one package to
another, and they are the unpacking and patching of sources. Because of this, RPM makes two mac-
ros available to simplify these tasks:

1. The %setup macro, which is used to unpack the original sources.

2. The %patch macro, which is used to apply patches to the original sources.

These macros are used exclusively in the %prep script; it wouldn't make sense to use them any-
where else. The use of these macros is not mandatory — It is certainly possible to write a %prep
script without them. But in the vast majority of cases they make life easier for the package builder.

The %setup Macro
As we mentioned above, the %setup macro is used to unpack the original sources, in preparation
for the build. In its simplest form, the macro is used with no options and gets the name of the source
archive from the source tag specified earlier in the spec file. Let's look at an example. The cdplayer
package has the following source tag:

Inside the Spec File

178

Source: ftp://ftp.gnomovision.com/pub/cdplayer/cdplayer-1.0.tgz

and the following %prep script:

%prep
%setup

In this simple case, the %setup macro expands into the following commands:

cd /usr/src/redhat/BUILD
rm -rf cdplayer-1.0
gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
cd cdplayer-1.0
cd /usr/src/redhat/BUILD/cdplayer-1.0
chown -R root.root .
chmod -R a+rX,g-w,o-w .

As we can see, the %setup macro starts by changing directory into RPM's build area and removing
any cdplayer build trees from previous builds. It then uses gzip to uncompress the original source
(whose name was taken from the source tag), and pipes the result to tar for unpacking. The return
status of the unpacking is tested. If successful, the macro continues.

At this point, the original sources have been unpacked. The %setup macro continues by changing
directory into cdplayer's top-level directory. The two cd commands are an artifact of %setup's
macro expansion. Finally, %setup makes sure every file in the build tree is owned by root and has
appropriate permissions set.

But that's just the simplest way that %setup can be used. There are a number of other options that
can be added to accommodate different situations. Let's look at them.

-n <name> — Set Name of Build Directory

In our example above, the %setup macro simply uncompressed and unpacked the sources. In this
case, the tar file containing the original sources was created such that the top-level directory was in-
cluded in the tar file. The name of the top-level directory was also identical to that of the tar file,
which was in <name>-<version> format.

However, this is not always the case. Quite often, the original sources unpack into a directory whose
name is different than the original tar file. Since RPM assumes the directory will be called
<name>-<version>, when the directory is called something else, it's necessary to use %setup's -
n option. Here's an example:

Assume, for a moment, that the cdplayer sources, when unpacked, create a top-level directory
named cd-player. In this case, our %setup line would look like this:

%setup -n cd-player

Inside the Spec File

179

and the resulting commands would look like this:

cd /usr/src/redhat/BUILD
rm -rf cd-player
gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
cd cd-player
cd /usr/src/redhat/BUILD/cd-player
chown -R root.root .
chmod -R a+rX,g-w,o-w .

The results are identical to using %setup with no options, except for the fact that %setup now does
a recursive delete on the directory cd-player (instead of cdplayer-1.0), and changes directory into cd-
player (instead of cdplayer-1.0).

Note that all subsequent build-time scripts will change directory into the directory specified by the -
n option. This makes -n unsuitable as a means of unpacking sources in directories other than the
top-level build directory. In the upcoming example on the section called “ Using %setup in a Multi-
source Spec File ”, we'll show a way around this restriction.

A quick word of warning: If the name specified with the -n option doesn't match the name of the
directory created when the sources are unpacked, the build will stop pretty quickly, so it pays to be
careful when using this option.

-c — Create Directory (and change to it) Before Unpacking

How many times have you grabbed a tar file and unpacked it, only to find that it splattered files all
over your current directory? Sometimes source archives are created without a top-level directory.

As you can see from the examples so far, %setup expects the archive to create its own top-level dir-
ectory. If this isn't the case, you'll need to use the -c option.

This option simply creates the directory and changes directory into it before unpacking the sources.
Here's what it looks like:

cd /usr/src/redhat/BUILD
rm -rf cdplayer-1.0
mkdir -p cdplayer-1.0
cd cdplayer-1.0
gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
cd /usr/src/redhat/BUILD/cdplayer-1.0
chown -R root.root .
chmod -R a+rX,g-w,o-w .

The only changes from using %setup with no options, are the mkdir and cd commands, prior to the
commands that unpack the sources. Note that you can use the -n option along with -c, so something
like %setup -c -n blather works as expected.

Inside the Spec File

180

-D — Do Not Delete Directory Before Unpacking Sources

The -D option keeps the %setup macro from deleting the software's top-level directory. This option
is handy when the sources being unpacked are to be added to an already-existing directory tree. This
would be the case when more than one %setup macro is used. Here's what %setup does when the -
D option is employed:

cd /usr/src/redhat/BUILD
gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
cd cdplayer-1.0
cd /usr/src/redhat/BUILD/cdplayer-1.0
chown -R root.root .
chmod -R a+rX,g-w,o-w .

As advertised, the rm prior to the tar command is gone.

-T — Do Not Perform Default Archive Unpacking

The -T option disables %setup's normal unpacking of the archive file specified on the source0 line.
Here's what the resulting commands look like:

cd /usr/src/redhat/BUILD
rm -rf cdplayer-1.0
cd cdplayer-1.0
cd /usr/src/redhat/BUILD/cdplayer-1.0
chown -R root.root .
chmod -R a+rX,g-w,o-w .

Doesn't make much sense, does it? There's a method to this madness. We'll see the -T in action in
the next section.

-b <n> — Unpack The nth Sources Before Changing Directory

The -b option is used in conjunction with the source tag. Specifically, it is used to identify which of
the numbered source tags in the spec file are to be unpacked.

The -b option requires a numeric argument matching an existing source tag. If a numeric argument
is not provided, the build will fail:

rpmbuild -ba cdplayer-1.0.spec
* Package: cdplayer
Need arg to %setup -b
Build failed.
#

Remembering that the first source tag is implicitly numbered 0, let's see what happens when the
%setup line is changed to %setup -b 0:

Inside the Spec File

181

cd /usr/src/redhat/BUILD
rm -rf cdplayer-1.0
gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
cd cdplayer-1.0
cd /usr/src/redhat/BUILD/cdplayer-1.0
chown -R root.root .
chmod -R a+rX,g-w,o-w .

That's strange. The sources were unpacked twice. It doesn't make sense, until you realize that this is
why there is a -T option. Since -T disables the default source file unpacking, and -b selects a partic-
ular source file to be unpacked, the two are meant to go together, like this:

%setup -T -b 0

Looking at the resulting commands, we find:

cd /usr/src/redhat/BUILD
rm -rf cdplayer-1.0
gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
cd cdplayer-1.0
cd /usr/src/redhat/BUILD/cdplayer-1.0
chown -R root.root .
chmod -R a+rX,g-w,o-w .

That's more like it! Let's go on to the next option.

-a <n> — Unpack The nth Sources After Changing Directory

The -a option works similarly to the -b option, except that the sources are unpacked after changing
directory into the top-level build directory. Like the -b option, -a requires -T in order to prevent two
sets of unpacking commands. Here are the commands that a %setup -T -a 0 line would produce:

cd /usr/src/redhat/BUILD
rm -rf cdplayer-1.0
cd cdplayer-1.0
gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
cd /usr/src/redhat/BUILD/cdplayer-1.0
chown -R root.root .

Inside the Spec File

182

6 Yes, the source tags should include a URL pointing to the sources.

chmod -R a+rX,g-w,o-w .

Note that there is no mkdir command to create the top-level directory prior to issuing a cd into it. In
our example, adding the -c option will make things right:

cd /usr/src/redhat/BUILD
rm -rf cdplayer-1.0
mkdir -p cdplayer-1.0
cd cdplayer-1.0
gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
cd /usr/src/redhat/BUILD/cdplayer-1.0
chown -R root.root .
chmod -R a+rX,g-w,o-w .

The result is the proper sequence of commands for unpacking a tar file with no top-level directory.

Using %setup in a Multi-source Spec File

If all these interrelated options seem like overkill for unpacking a single source file, you're right.
The real reason for the various options is to make it easier to combine several separate source
archives into a single, build-able entity. Let's see how they work in that type of environment.

For the purposes of this example, our spec file will have the following three source tags: 6

source: source-zero.tar.gz
source1: source-one.tar.gz
source2: source-two.tar.gz

To unpack the first source is not hard; all that's required is to use %setup with no options:

%setup

This produces the following set of commands:

cd /usr/src/redhat/BUILD
rm -rf cdplayer-1.0
gzip -dc /usr/src/redhat/SOURCES/source-zero.tar.gz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
cd cdplayer-1.0
cd /usr/src/redhat/BUILD/cdplayer-1.0
chown -R root.root .

Inside the Spec File

183

chmod -R a+rX,g-w,o-w .

If source-zero.tar.gz didn't include a top-level directory, we could have made one by
adding the -c option:

%setup -c

which would result in:

cd /usr/src/redhat/BUILD
rm -rf cdplayer-1.0
mkdir -p cdplayer-1.0
cd cdplayer-1.0
gzip -dc /usr/src/redhat/SOURCES/source-zero.tar.gz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
cd /usr/src/redhat/BUILD/cdplayer-1.0
chown -R root.root .
chmod -R a+rX,g-w,o-w .

Of course, if the top-level directory did not match the package name, the -n option could have been
added:

%setup -n blather

which results in:

cd /usr/src/redhat/BUILD
rm -rf blather
gzip -dc /usr/src/redhat/SOURCES/source-zero.tar.gz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
cd blather
cd /usr/src/redhat/BUILD/blather
chown -R root.root .
chmod -R a+rX,g-w,o-w .

or

%setup -c -n blather

Inside the Spec File

184

This results in:

cd /usr/src/redhat/BUILD
rm -rf blather
mkdir -p blather
cd blather
gzip -dc /usr/src/redhat/SOURCES/source-zero.tar.gz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
cd /usr/src/redhat/BUILD/blather
chown -R root.root .
chmod -R a+rX,g-w,o-w .

Now let's add the second source file. Things get a bit more interesting here. First, we need to identi-
fy which source tag (and therefore, which source file) we're talking about. So we need to use either
the -a or -b option, depending on the characteristics of the source archive. For this example, let's say
that -a is the option we want. Adding that option, plus a "1" to point to the source file specified in
the source1 tag, we have:

%setup -a 1

Since we've already seen that using the -a or -b option results in duplicate unpacking, we need to
disable the default unpacking by adding the -T option:

%setup -T -a 1

Next, we need to make sure that the top-level directory isn't deleted. Otherwise, the first source file
we just unpacked would be gone. That means we need to include the -D option to prevent that from
happening. Adding this final option, and including the now complete macro in our %prep script,
we now have:

%setup
%setup -T -D -a 1

This will result in the following commands:

cd /usr/src/redhat/BUILD
rm -rf cdplayer-1.0
gzip -dc /usr/src/redhat/SOURCES/source-zero.tar.gz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
cd cdplayer-1.0
cd /usr/src/redhat/BUILD/cdplayer-1.0

Inside the Spec File

185

chown -R root.root .
chmod -R a+rX,g-w,o-w .
cd /usr/src/redhat/BUILD
cd cdplayer-1.0
gzip -dc /usr/src/redhat/SOURCES/source-one.tar.gz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
cd /usr/src/redhat/BUILD/cdplayer-1.0
chown -R root.root .
chmod -R a+rX,g-w,o-w .

So far, so good. Let's include the last source file, but with this one, we'll say that it needs to be un-
packed in a subdirectory of cdplayer-1.0 called database. Can we use %setup in this case?

We could, if source-two.tgz created the database subdirectory. If not, then it'll be necessary
to do it by hand. For the purposes of our example, let's say that source-two.tgz wasn't created
to include the database subdirectory, so we'll have to do it ourselves. Here's our %prep script
now:

%setup
%setup -T -D -a 1
mkdir database
cd database
gzip -dc /usr/src/redhat/SOURCES/source-two.tar.gz | tar -xvvf -

Here's the resulting script:

cd /usr/src/redhat/BUILD
rm -rf cdplayer-1.0
gzip -dc /usr/src/redhat/SOURCES/source-zero.tar.gz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
cd cdplayer-1.0
cd /usr/src/redhat/BUILD/cdplayer-1.0
chown -R root.root .
chmod -R a+rX,g-w,o-w .
cd /usr/src/redhat/BUILD
cd cdplayer-1.0
gzip -dc /usr/src/redhat/SOURCES/source-one.tar.gz | tar -xvvf -
if [$? -ne 0]; then
exit $?

fi
mkdir database
cd database
gzip -dc /usr/src/redhat/SOURCES/source-two.tar.gz | tar -xvvf -

The three commands we added to unpack the last set of sources were added to the end of the %prep
script.

The bottom line to using the %setup macro is that you can probably get it to do what you want, but
don't be afraid to tinker. And even if %setup can't be used, it's easy enough to add the necessary
commands to do the work manually. Above all, make sure you use the --test option when testing
your %setup macros, so you can see what commands they're translating to.

Inside the Spec File

186

Next, let's look at RPM's second macro, %patch.

The %patch Macro
The %patch macro, as its name implies, is used to apply patches to the unpacked sources. In the
following examples, our spec file has the following patch tag lines:

patch0: patch-zero
patch1: patch-one
patch2: patch-two

At its simplest, the %patch macro can be invoked without any options:

%patch

Here are the resulting commands:

echo "Patch #0:"
patch -p0 -s < /usr/src/redhat/SOURCES/patch-zero

The %patch macro nicely displays a message showing that a patch is being applied, then invokes
the patch command to actually do the dirty work. There are two options to the patch command:

1. The -p option, which directs patch to remove the specified number of slashes (and any inter-
vening directories) from the front of any filenames specified in the patch file. In this case, noth-
ing will be removed.

2. The -s option, which directs patch to apply the patch without displaying any informational
messages. Only errors from patch will be displayed.

How did the %patch macro know which patch to apply? Keep in mind that, like the source tag
lines, every patch tag is numbered, starting at zero. The %patch macro, by default, applies the
patch file named on the patch (or patch0) tag line.

Specifying Which patch Tag to Use

The %patch macro actually has two different ways to specify the patch tag line it is to use. The
first method is to simply append the number of the desired patch tag to the end of the %patch
macro itself. For example, in order to apply the patch specified on the patch2 tag line, the following
%patch macro could be used:

%patch2

Inside the Spec File

187

The other approach is to use the -P option. This option is followed by the number of the patch tag
line desired. Therefore, this line is identical in function to the previous one:

%patch -P 2

Note that the -P option will not apply the file specified on the patch0 line, by default. Therefore, if
you choose to use the -P option to specify patch numbers, you'll need to use the following format
when applying patch zero:

%patch -P 0

-p <#> — Strip <#> leading slashes and directories from patch fi-
lenames

The -p (Note the lowercase "p"!) option is sent directly to the patch command. It is followed by a
number, which specifies the number of leading slashes (and the directories in between) to strip from
any filenames present in the patch file. For more information on this option, please consult the
patch man page.

-b <name> — Set the backup file extension to <name>

When the patch command is used to apply a patch, unmodified copies of the files patched are re-
named to end with the extension .orig. The -b option is used to change the extension used by
patch. This is normally done when multiple patches are to be applied to a given file. By doing this,
copies of the file as it existed prior to each patch, are readily available.

-E — Remove Empty Output Files

The -E option is passed directly to the patch program. When patch is run with the -E option, any
output files that are empty after the patches have been applied, are removed.

Now let's take %patch on a test-drive, and put it through its paces.

An example of the %patch Macro in Action

Using the example patch tag lines we've used throughout this section, let's put together an example
and look at the resulting commands. In our example, the first patch to be applied needs to have the
root directory stripped. Its %patch macro will look like this:

%patch -p1

The next patch is to be applied to files in the software's lib subdirectory, so we'll need to add a cd
command to get us there. We'll also need to strip an additional directory:

cd lib
%patch -P 1 -p2

Inside the Spec File

188

Finally, the last patch is to be applied from the software's top-level directory, so we need to cd back
up a level. In addition, this patch modifies some files that were also patched the first time, so we'll
need to change the backup file extension:

cd ..
%patch -P 2 -p1 -b .last-patch

Here's what the %prep script (minus any %setup macros) looks like:

%patch -p1
cd lib
%patch -P 1 -p2
cd ..
%patch -P 2 -p1 -b .last-patch

And here's what the macros expand to:

echo "Patch #0:"
patch -p1 -s < /usr/src/redhat/SOURCES/patch-zero
cd lib
echo "Patch #1:"
patch -p2 -s < /usr/src/redhat/SOURCES/patch-one
cd ..
echo "Patch #2:"
patch -p1 -b .last-patch -s < /usr/src/redhat/SOURCES/patch-two

No surprises here. Note that the %setup macro leaves the current working directory set to the soft-
ware's top-level directory, so our cd commands with their relative paths will do the right thing. Of
course, we have environment variables available that could be used here, too.

Compressed Patch Files

If a patch file is compressed with gzip, RPM will automatically decompress it before applying the
patch. Here's a compressed patch file as specified in the spec file:

Patch: bother-3.5-hack.patch.gz

This is part of the script RPM will execute when the %prep section is executed:

echo Executing: %prep
…
echo "Patch #0:"

Inside the Spec File

189

7 This is not entirely the case when a relocatable package is being built. For more information on relocatable packages, see Chapter 15, Mak-
ing a Relocatable Package.

gzip -dc /usr/src/redhat/SOURCES/bother-3.5-hack.patch.gz | patch -p1 -s
…

First, the patch file is decompressed using gzip. The output from gzip is then piped into patch.

That's about it for RPM's macros. Next, let's take a look at the %files list.

The %files List
The %files list indicates to RPM which files on the build system are to be packaged. The list con-
sists of one file per line. The file may have one or more directives preceding it. These directives give
RPM additional information about the file and are discussed more fully below.

Normally, each file includes its full path. The path performs two functions. First, it specifies the
file's location on the build system. Second, it denotes where the file should be placed when the pack-
age is to be installed. 7

For packages that create directories containing hundreds of files, it can be quite cumbersome creat-
ing a list that contains every file. To make this situation a bit easier, if the %files list contains a path
to a directory, RPM will automatically package every file in that directory, as well as every file in
each subdirectory. Shell-style globbing can also be used in the %files list.

Directives For the %files list
The %files list may contain a number of different directives. They are used to:

• Identify documentation and configuration files.

• Ensure that a file has the correct permissions and ownership set.

• Control which aspects of a file are to be checked during package verification.

• Eliminate some of the tedium in creating the %files list.

In the %files list, one or more directives may be placed on a line, separated by spaces, before one or
more filenames. Therefore, if %foo and %bar are two %files list directives, they may be applied to
a file baz in the following manner:

%foo %bar baz

Now it's time to take a look at the directives that inhabit the %files list.

File-related Directives
RPM processes files differently according to their type. However, RPM does not have a method of
automatically determining file types. Therefore, it is up to the package builder to appropriately mark
files in the %files list. This is done using one of the directives below.

Inside the Spec File

190

Keep in mind that not every file will need to be marked. As you read the following sections, you'll
see that directives are only used in special circumstances. In most packages, the majority of files in
the %files list will not need to be marked.

The %doc Directive

The %doc directive flags the filename(s) that follow, as being documentation. RPM keeps track of
documentation files in its database, so that a user can easily find information about an installed
package. In addition, RPM can create a package-specific documentation directory during installation
and copy documentation into it. Whether or not this additional step is taken, is dependent on how a
file is specified. Here is an example:

%doc README
%doc /usr/local/foonly/README

The file README exists in the software's top-level directory during the build, and is included in the
package file. When the package is installed, RPM creates a directory in the documentation directory
named the same as the package (ie, <software>-<version>-<release>), and copies the
README file there. The newly created directory and the README file are marked in the RPM data-
base as being documentation. The default documentation directory is /usr/doc, and can be
changed by setting the defaultdocdir rpmrc file entry. For more information on rpmrc files,
please see Appendix B, The rpmrc File.

The file /usr/local/foonly/README was installed into that directory during the build and is
included in the package file. When the package is installed, the README file is copied into /
usr/local/foonly and marked in the RPM database as being documentation.

The %config Directive

The %config directive is used to flag the specified file as being a configuration file. RPM performs
additional processing for config files when packages are erased, and during installations and up-
grades. This is due to the nature of config files: They are often changed by the system administrator,
and those changes should not be lost.

There is a restriction to the %config directive, and that restriction is that no more than one filename
may follow the %config. This means that the following example is the only allowable way to spe-
cify config files:

%config /etc/foonly

Note that the full path to the file, as it is installed at build time, is required.

The %attr Directive

The %attr directive permits finer control over three key file attributes:

1. The file's permissions, or "mode".

2. The file's user ID.

3. The file's group ID.

Inside the Spec File

191

The %attr directive has the following format:

%attr(<mode>, <user>, <group>) file

The mode is specified in the traditional numeric format, while the user and group are specified as a
string, such as "root". Here's a sample %attr directive:

%attr(755, root, root) foo.bar

This would set foo.bar's permissions to 755. The file would be owned by user root, group root. If
a particular attribute does not need to be specified (usually because the file is installed with that at-
tribute set properly), then that attribute may be replaced with a dash:

%attr(755, -, root) foo.bar

The main reason to use the %attr directive is to permit users without root access to build packages.
The techniques for doing this (and a more in-depth discussion of the %attr directive) can be found
in Chapter 16, Making a Package That Can Build Anywhere.

The %defattr Directive

The %defattr directive allows setting of default attributes for files and directives. The %defattr
has a similar format to the %attr directive:

1. The default permissions, or "mode" for files.

2. The default user id.

3. The default group id.

4. The default permissions, or "mode" for directories.

The %attr directive has the following format:

%defattr(<file mode>, <user>, <group>, <dir mode>)

As with %attr if a particular attribute does not need to be specified (usually because the file is in-
stalled with that attribute set properly), then that attribute may be replaced with a dash. In addition
the directory mode may be ommited. %defattr tends to be used at the top of %files.

The %ghost Directive

As we mentioned in the section called “The %files List”, if a file is specified in the %files list, that

Inside the Spec File

192

file will automatically be included in the package. There are times when a file should be owned by
the package but not installed - log files and state files are good examples of cases you might desire
this to happen.

The way to achieve this, is to use the %ghost directive. By adding this directive to the line contain-
ing a file, RPM will know about the ghosted file, but will not add it to the package. However it still
needs to be in the buildroot. Here's an example of %ghost in action.

The blather-1.0 package logs to /var/log/blather.log in it's default config. In the spec file,
the /var/log/blather.log file is included in the %files list. We can see that blather.log be-
longs to the package, and it is removed when the package is.

%install
touch $RPM_BUILD_ROOT%{_localstatedir}/log/blather.log
…
%files
…
%ghost %{_localstatedir}/log/blather.log
…

rpm -qf /var/log/blather.log

blather-1.0-1

rpm -ql blather | grep blather.log

rpm -e blather && ls /var/log/blather.log

ls: /var/log/blather.log: No such file or directory

There file touched in the %install stage will not be installed to /var/log/blather.log al-
though it will be added to the rpm database, as we can see from querying the file, however it is not
visible from a package listing, but as it is owned by the package it will be removed when the pack-
age is removed. In addition it is possible to use setperms to fix the permissions on a %ghost file.

ls -al /var/log/blather.log

-rw-r--r-- 1 root root 3448 Jun 18 17:00 /var/log/blather.log

#chmod 666 /var/log/blather.log
ls -al /var/log/blather.log

-rw-rw-rw- 1 root root 3448 Jun 18 17:00 /var/log/blather.log

#rpm --setperms blather
ls -al /var/log/blather.log

-rw-r--r-- 1 root root 3448 Jun 18 17:00 /var/log/blather.log

The %verify Directive

RPM's ability to verify the integrity of the software it has installed is impressive. But sometimes it's
a bit too impressive. After all, RPM can verify as many as nine different aspects of every file. The
%verify directive can control which of these file attributes are to be checked when an RPM verific-
ation is done. Here are the attributes, along with the names used by the %verify directive:

Inside the Spec File

193

8 RPM will automatically exclude file attributes from verification if it doesn't make sense for the type of file. In our example, getting the
MD5 checksum of a device file is an example of such a situation.

1. Owner (owner)

2. Group (group)

3. Mode (mode)

4. MD5 Checksum (md5)

5. Size (size)

6. Major Number (maj)

7. Minor Number (min)

8. Symbolic Link String (symlink)

9. Modification Time (mtime)

How is %verify used? Say, for instance, that a package installs device files. Since the owner of a
device will change, it doesn't make sense to have RPM verify the device file's owner/group and give
out a false alarm. Instead, the following %verify directive could be used:

%verify(mode md5 size maj min symlink mtime) /dev/ttyS0

We've left out owner and group, since we'd rather RPM not verify those. 8

However, if all you want to do is prevent RPM from verifying one or two attributes, you can use
%verify's alternate syntax:

%verify(not owner group) /dev/ttyS0

This use of %verify produces identical results to the previous example.

Directory-related Directives
While the two directives in this section perform different functions, each is related to directories in
some way. Let's see what they do:

The %docdir Directive

The %docdir directive is used to add a directory to the list of directories that will contain docu-
mentation. RPM includes the directories /usr/doc, /usr/info, and /usr/man in the
%docdir list by default.

For example, if the following line is part of the %files list:

%docdir /usr/blather

Inside the Spec File

194

any files in the %files list that RPM packages from /usr/blather will be included in the pack-
age as usual, but will also be automatically flagged as documentation. This directive is handy when
a package creates its own documentation directory and contains a large number of files. Let's give it
a try by adding the following line to our spec file:

%docdir /usr/blather

Our %files list contains no references to the several files the package installs in the /
usr/blather directory. After building the package, looking at the package's file list shows:

rpm -qlp ../RPMS/i386/blather-1.0-1.i386.rpm

…

#

Wait a minute: There's nothing there, not even /usr/blather! What happened?

The problem is that %docdir only directs RPM to mark the specified directory as holding docu-
mentation. It doesn't direct RPM to package any files in the directory. To do that, we need to clue
RPM in to the fact that there are files in the directory that must be packaged.

One way to do this is to simply add the files to the %files list:

%docdir /usr/blather
/usr/blather/INSTALL

Looking at the package, we see that INSTALL was packaged:

rpm -qlp ../RPMS/i386/blather-1.0-1.i386.rpm

…
/usr/blather/INSTALL

#

Directing RPM to only show the documentation files, we see that INSTALL has indeed been
marked as documentation, even though the %doc directive had not been used:

rpm -qdp ../RPMS/i386/blather-1.0-1.i386.rpm

…
/usr/blather/INSTALL

#

Of course, if you go to the trouble of adding each file to the %files list, it wouldn't be that much
more work to add %doc to each one. So the way to get the most benefit from %docdir is to add an-

Inside the Spec File

195

other line to the %files list:

%docdir /usr/blather
/usr/blather

Since the first line directs RPM to flag any file in /usr/blather as being documentation, and
the second line tells RPM to automatically package any files found in /usr/blather, every
single file in there will be packaged and marked as documentation:

rpm -qdp ../RPMS/i386/blather-1.0-1.i386.rpm

/usr/blather
/usr/blather/COPYING
/usr/blather/INSTALL
/usr/blather/README
…

#

The %docdir directive can save quite a bit of effort in creating the %files list. The only caveat is
that you must be sure the directory will only contain files you want marked as documentation. Keep
in mind, also, that all subdirectories of the %docdir'ed directory will be marked as documentation
directories, too.

The %dir Directive

As we mentioned in the section called “The %files List”, if a directory is specified in the %files
list, the contents of that directory, and the contents of every directory under it, will automatically be
included in the package. While this feature can be handy (assuming you are sure that every file un-
der the directory should be packaged) there are times when this could be a problem.

The way to get around this, is to use the %dir directive. By adding this directive to the line contain-
ing the directory, RPM will package only the directory itself, regardless of what files are in the dir-
ectory at the time the package is created. Here's an example of %dir in action.

The blather-1.0 package creates the directory /usr/blather as part of its build. It also puts sev-
eral files in that directory. In the spec file, the /usr/blather directory is included in the %files
list:

%files
…
/usr/blather
…

There are no other entries in the %files list that have /usr/blather as part of their path. After
building the package, we use RPM to look at the files in the package:

rpm -qlp ../RPMS/i386/blather-1.0-1.i386.rpm

…
/usr/blather
/usr/blather/COPYING
/usr/blather/INSTALL

Inside the Spec File

196

/usr/blather/README
…

#

The files present in /usr/blather at the time the package was built were included in the pack-
age automatically, without entering their names in the %files list.

However, after changing the /usr/blather line in the %files list to:

%dir /usr/blather

and rebuilding the package, a listing of the package's files now includes only the /usr/blather
directory:

rpm -qlp ../RPMS/i386/blather-1.0-1.i386.rpm

…
/usr/blather
…

#

-f <file> — Read the %files List From <file>

The -f option is used to direct RPM to read the %files list from the named file. Like the %files list
in a spec file, the file named using the -f option should contain one filename per line and also in-
clude any of the directives named in this section.

Why is it necessary to read filenames from a file rather than have the filenames in the spec file?
Here's a possible reason:

The filenames' paths may contain a directory name that can only be determined at build-time, such
as an architecture specification. The list of files, minus the variable part of the path, can be created,
and sed can be used at build-time to update the path appropriately.

It's not necessary that every filename to be packaged reside in the file. If there are any filenames
present in the spec file, they will be packaged as well:

%files latex -f tetex-latex-skel
/usr/bin/latex
/usr/bin/pslatex
…

Here, the filenames present in the file tetex-latex-skel would be packaged, followed by
every filename following the %files line.

The Lone Directive: %package
While every directive we've seen so far is used in the %files list, the %package directive is differ-
ent. It is used to permit the creation of more than one package per spec file and can appear at any

Inside the Spec File

197

point in the spec file. These additional packages are known as subpackages. Subpackages are named
according to the contents of the line containing the %package directive. The format of the package
directive is:

%package: <string>

The <string> should be a name that describes the subpackage. This string is appended to the base
package name to produce the subpackage's name. For example, if a spec file contains a name tag
value of "foonly", and a "%package doc" line, then the subpackage name will be foonly-doc.

-n <string> — Use <string> As the Entire Subpack-
age Name

As we mentioned above, the name of a subpackage normally includes the main package name.
When the -n option is added to the %package directive, it directs RPM to use the name specified on
the %package line as the entire package name. In the example above, the following %package line
would create a subpackage named foonly-doc:

%package doc

The following %package line would create a subpackage named doc:

%package -n doc

The %package directive plays another role in subpackage building. That role is to act as a place to
collect tags that are specific to a given subpackage. Any tag placed after a %package directive will
only apply to that subpackage.

Finally, the name string specified by the %package directive is also used to denote which parts of
the spec file are a part of that subpackage. This is done by including the string (along with the -n op-
tion, if present on the %package line) on the starting line of the section that is to be subpackage-specif-
ic. Here's an example:

…
%package -n bar
…
%post -n bar
…

In this heavily edited spec file segment, a subpackage called bar has been defined. Later in the file is
a post-install script. Because it has subpackage bar's name on the %post line, the post-install script
will be part of the bar subpackage only.

For more information on building subpackages, please see Chapter 18, Creating Subpackages.

Inside the Spec File

198

Conditionals
While the "exclude" and "exclusive" tags (excludearch, exclusivearch, excludeos, and
exclusiveos) provide some control over whether a package will be built on a given architecture and/
or operating system, that control is still rather coarse.

For example, what should be done if a package will build under multiple architectures, but requires
slightly different %build scripts? Or what if a package requires a certain set of files under one oper-
ating system, and an entirely different set under another operating system? The architecture and op-
erating system-specific tags we've discussed earlier in the chapter do nothing to help in such situ-
ations. What can be done?

One approach would be to simply create different spec files for each architecture or operating sys-
tem. While it would certainly work, this approach has some problems:

• More work. The existence of multiple spec files for a given package means that the effort re-
quired to make any changes to the package is multiplied by however many different spec files
there are.

• More chance for mistakes. If any work needs to be done to the spec files, the fact they are separ-
ate means it is that much easier to forget to make the necessary changes to each one. There is
also the chance of introducing mistakes each time changes are made.

The other approach is to somehow permit the conditional inclusion of architecture- or operating sys-
tem-specific sections of the spec file. Fortunately, the RPM designers chose this approach, and it
makes multi-platform package building easier and less prone to mistakes.

We discuss multi-platform package building in depth in Chapter 19, Building Packages for Multiple
Architectures and Operating Systems . For now, let's take a quick look at RPM's conditionals.

The %ifarch Conditional
The %ifarch conditional is used to begin a section of the spec file that is architecture-specific. It is
followed by one or more architecture specifiers, each separated by commas or whitespace. Here is
an example:

%ifarch i386 sparc

The contents of the spec file following this line would be processed only by Intel x86 or Sun
SPARC-based systems. However, if only this line were placed in a spec file, this is what would hap-
pen if a build was attempted:

rpmbuild -ba cdplayer-1.0.spec

Unclosed %if
Build failed.

#

The problem that surfaced here is that any conditional must be "closed" by using either %else or
%endif. We'll be covering them a bit later in the chapter.

The %ifnarch Conditional

Inside the Spec File

199

The %ifnarch conditional is used in a similar fashion to %ifarch, except that the logic is reversed.
If a spec file contains a conditional block starting with %ifarch alpha, that block would be pro-
cessed only if the build was being done on a Digital Alpha/AXP-based system. However, if the con-
ditional block started with %ifnarch alpha, then that block would be processed only if the build
were not being done on an Alpha.

Like %ifarch, %ifnarch can be followed by one or more architectures and must be closed by a
%else or %endif.

The %ifos Conditional
The %ifos conditional is used to control RPM's spec file processing based on the build system's op-
erating system. It is followed by one or more operating system names. A conditional block started
with %ifos must be closed by a %else or %endif. Here's an example:

%ifos linux

The contents of the spec file following this line would be processed only if the build was done on a
linux system.

The %ifnos Conditional
The %ifnos conditional is the logical complement to %ifos: that is, if a conditional starting with the
line %ifnos irix is present in a spec file, then the file contents after the %ifnos will not be pro-
cessed if the build system is running Irix. As always, a conditional block starting with %ifnos must
be closed by a %else or %endif.

The %else Conditional
The %else conditional is placed between a %if conditional of some persuasion, and a %endif. It is
used to create two blocks of spec file statements, only one of which will be used in any given case.
Here's an example:

%ifarch alpha
make RPM_OPT_FLAGS="$RPM_OPT_FLAGS -I ."
%else
make RPM_OPT_FLAGS="$RPM_OPT_FLAGS"
%endif

When a build is performed on a Digital Alpha/AXP, some additional flags are added to the make
command. On all other systems, these flags are not added.

The %endif Conditional
A %endif is used to end a conditional block of spec file statements. It can follow one of the %if
conditionals, or the %else. The %endif is always needed after a conditional, otherwise the build
will fail. Here's short conditional block, ending with a %endif:

%ifarch i386
make INTELFLAG=-DINTEL

Inside the Spec File

200

%endif

In this example, we see the conditional block started with a %ifarch and ended with a %endif.

Now that we have some more in-depth knowledge of the spec file, let's take a look at some of
RPM's additional features. In the next chapter, we'll explore how to add dependency information to
a package.

Inside the Spec File

201

Chapter 14. Adding Dependency
Information to a Package

Since the very first version of RPM hit the streets, one of the side effects of RPM's ease of use was
that it made it easier for people to break things. Since RPM made it so simple to erase packages, it
became common for people to joyfully erase packages until something broke.

Usually this only bit people once, but even once was too much of a hassle if it could be prevented.
With this in mind, the RPM developers gave RPM the ability to:

• Build packages that contain information on the capabilities they require.

• Build packages that contain information on the capabilities they provide.

• Store this "provides" and "requires" information in the RPM database.

In addition, they made sure RPM was able to display dependency information, as well as to warn
users if they were attempting to do something that would break a package's dependency require-
ments.

With these features in place, it became more difficult for someone to unknowingly erase a package
and wreak havoc on their system.

An Overview of Dependencies
We've already alluded to the underlying concept for RPM's dependency processing. It is based on
two key factors:

• Packages advertise what capabilities they provide.

• Packages advertise what capabilities they require.

By simply checking these two types of information, many possible problems can be avoided. For
example, if a package requires a capability that is not provided by any already-installed package,
that package cannot be installed and expected to work properly.

On the other hand, if a package is to be erased, but its capabilities are required by other installed
packages, then it cannot be erased without causing other packages to fail.

As you might imagine, it's not quite that simple. But adding dependency information can be easy. In
fact, in most cases, it's automatic!

Automatic Dependencies
When a package is built by RPM, if any file in the package's %files list is a shared library, the lib-
rary's soname is automatically added to the list of capabilities the package provides. The soname is
the name used to determine compatibility between different versions of a library.

Note that this is not a filename. In fact, no aspect of RPM's dependency processing is based on file-
names. Many people new to RPM often make the assumption that a failed dependency represents a
missing file. This is not the case.

Remember that RPM's dependency processing is based on knowing what capabilities are provided
by a package and what capabilities a package requires. We've seen how RPM automatically determ-
ines what shared library resources a package provides. But does it automatically determine what

202

shared libraries a package requires?

Yes! RPM does this by running ldd on every executable program in a package's %files list. Since
ldd provides a list of the shared libraries each program requires, both halves of the equation are
complete — that is, the packages that make shared libraries available, and the packages that require
those shared libraries, are tracked by RPM. RPM can then take that information into account when
packages are installed, upgraded, or erased.

The Automatic Dependency Scripts
RPM uses two scripts to handle automatic dependency processing. They reside in /usr/bin and
are called find-requires, and find-provides. We'll take a look at them in a minute, but
first let's look at why there are scripts to do this sort of thing. Wouldn't it be better to have this built
into RPM itself?

Actually, creating scripts for this sort of thing is a better idea. The reason? RPM has already been
ported to a variety of different operating systems. Determining what shared libraries an executable
requires, and the soname of shared libraries, is simple, but the exact steps required vary widely from
one operating system to another. Putting this part of RPM into a script makes it easier to port RPM.

Let's take a look at the scripts that are used by RPM under the Linux operating system.

find-requires — Automatically Determine Shared Library Re-
quirements

The find-requires script for Linux is quite simple:

#!/bin/sh

note this works for both a.out and ELF executables

ulimit -c 0

filelist=`xargs -r file | fgrep executable | cut -d: -f1 `

for f in $filelist; do
ldd $f | awk '/=>/ { print $1 }'

done | sort -u | xargs -r -n 1 basename | sort -u

This script first creates a list of executable files. Then, for each file in the list, ldd determines the
file's shared library requirements, producing a list of sonames. Finally, the list of sonames is sanit-
ized by removing duplicates, and removing any paths.

find-provides — Automatically Determine Shared Library So-
names

The find-provides script for Linux is a bit more complex, but still pretty straightforward:

#!/bin/bash

This script reads filenames from STDIN and outputs any relevant
provides information that needs to be included in the package.

filelist=$(grep ".so" | grep -v "^/lib/ld.so" |
xargs file -L 2>/dev/null | grep "ELF.*shared object" | cut -d: -f1)

Adding Dependency Information to a
Package

203

for f in $filelist; do
soname=$(objdump -p $f | awk '/SONAME/ {print $2}')

if ["$soname" != ""]; then
if [! -L $f]; then

echo $soname
fi

else
echo ${f##*/}

fi
done | sort -u

First, a list of shared libraries is created. Then, for each file on the list, the soname is extracted,
cleaned up, and duplicates removed.

Automatic Dependencies: An Example
Let's take a widely used program, ls, the directory lister, as an example. On a Red Hat Linux system,
ls is part of the fileutils package and is installed in /bin. Let's play the part of RPM during
fileutils' package build and run find-requires on /bin/ls. Here's what we'll see:

find-requires
/bin/ls
<ctrl-d>

libc.so.5

#

The find-requires script returned libc.so.5. Therefore, RPM should add a requirement for
libc.so.5 when the fileutils package is built. We can verify that RPM did add ls' require-
ment for libc.so.5 by using RPM's --requires option to display fileutils' requirements:

rpm -q --requires fileutils

libc.so.5

#

OK, that's the first half of the equation — RPM automatically detecting a package's shared library
requirements. Now let's look at the second half of the equation -- RPM detecting packages that
provide shared libraries. Since the libc package includes, among others, the shared library /
lib/libc.so.5.3.12, RPM would obtain its soname. We can simulate this by using find-
provides to print out the library's soname:

find-provides
/lib/libc.so.5.3.12
Ctrl-D

libc.so.5

#

OK, so /lib/libc.so.5.3.12's soname is libc.so.5. Let's see if the libc package really
does "provide" the libc.so.5 soname:

Adding Dependency Information to a
Package

204

1 As long as the requiring and the providing packages are installed using the same invocation of RPM, the dependency checking will suc-
ceed. For example, the command rpm -ivh *.rpm will properly check for dependencies, even if the requiring package ends up being in-
stalled before the providing package.

rpm -q --provides libc

libm.so.5
libc.so.5

#

Yes, there it is, along with the soname of another library contained in the package. In this way, RPM
can ensure that any package requiring libc.so.5 will have a compatible library available as long
as the libc package, which provides libc.so.5, is installed.

In most cases, automatic dependencies are enough to fill the bill. However, there are circumstances
when the package builder has to manually add dependency information to a package. Fortunately,
RPM's approach to manual dependencies is both simple and flexible.

The autoreqprov, autoreq, and autoprov Tags — Dis-
able Automatic Dependency Processing

There may be times when RPM's automatic dependency processing is not desired. In these cases, the
autoreqprov, autoreq, and autoprov tags may be used to disable it. This tag takes a yes/no or 0/1
value. For example, to disable automatic dependency processing, the following line may be used:

AutoReqProv: no

The autoreq and autoprov tags can be used to disable automatic processing of requirements or
"provides" only, respectively.

Manual Dependencies
You might have noticed that we've been using the words "requires" and "provides" to describe the
dependency relationships between packages. As it turns out, these are the exact words used in spec
files to manually add dependency information. Let's look at the first tag: Requires.

The Requires Tag
We've been deliberately vague when discussing exactly what it is that a package requires. Although
we've used the word "capabilities", in fact, manual dependency requirements are always represented
in terms of packages. For example, if package foo requires that package bar is installed, it's only
necessary to add the following line to foo's spec file:

Requires: bar

Later, when the foo package is being installed, RPM will consider foo's dependency requirements
met if any version of package bar is already installed. 1

Adding Dependency Information to a
Package

205

If more than one package is required, they can be added to the Requires tag, one after another, sep-
arated by commas and/or spaces. So if package foo requires packages bar and baz, the following
line will do the trick:

Requires: bar, baz

As long as any version of bar and baz is installed, foo's dependencies will be met.

Adding Version Requirements

When a package has slightly more stringent needs, it's possible to require certain versions of a pack-
age. All that's necessary is to add the desired version number, preceded by one of the following
comparison operators:

• Requires package with a version less than the specified version.

• Requires package with a version less than or equal to the specified version.

• Requires package with a version equal to the specified version.

• Requires package with a version equal to or greater than the specified version.

• Requires package with a version greater than the specified version.

Continuing with our example, let's suppose that the required version of package bar actually needs
to be at least 2.7, and that the baz package must be version 2.1 — no other version will do. Here's
what the Requires tag line would look like:

Requires: bar >= 2.7, baz = 2.1

We can get even more specific and require a particular release of a package:

Requires: bar >= 2.7-4, baz = 2.1-1

When Version Numbers Aren't Enough

You might think that with all these features, RPM's dependency processing can handle every con-
ceivable situation. You'd be right, except for the problem of version numbers. RPM needs to be able
to determine which version numbers are more recent than others, in order to perform its version
comparisons.

It's pretty simple to determine that version 1.5 is older than version 1.6. But what about 2.01 and
2.1? Or 7.6a and 7.6? There's no way for RPM to keep up with all the different version-numbering
schemes in use. But there is a solution; two, in fact…

Solution Number 1: Epoch numbers

Adding Dependency Information to a
Package

206

When RPM can't decipher a package's version number, it's time to pull out the Epoch tag. This tag
is used to help RPM determine version number ordering. Here's a sample Epoch tag line:

Epoch: 42

This line indicates that the package has an epoch number of 42. What does the 42 mean? Only that
this version of the package is newer than the same package with an epoch number of 41, but older
than the same package with an epoch number of 43. If you think of epoch numbers as being nothing
more than very simple version numbers, you'll be on the mark. In other words, Epoch is the most
significant component of a package's complete version identifier with regards to RPM's version
comparison algorithm.

In order to direct RPM to look at the epoch number instead of the version number when doing de-
pendency checking, it's necessary to use a ":" before the version in the Requires tag line. So if a
package requires package foo to have an epoch number equal to 42, the following tag line would
be used:

Requires: foo = 42:

If the foo package needs to have an epoch number greater than or equal to 42, this line would
work:

Requires: foo >= 42:

If the foo package needs to have version with an epoch number 42 and version 1.0, this line would
work:

Requires: foo >= 42:1.0

You must include the epoch in a requires if it exists in the package.

It might seem that using epoch numbers is a lot of extra trouble, and you're right. But there is an al-
ternative:

Solution Number 2: Just Say No!

If you have the option between changing the software's version-numbering scheme, or using epoch
numbers in RPM, please consider changing the version-numbering scheme. Chances are, if RPM
can't figure it out, most of the people using your software can't, either. But in case you aren't the au-
thor of the software you're packaging, and its version numbering scheme is giving RPM fits, the
epoch tag can help you out.

Fine Grained Dependencies

For the vast majority of dependencies, using the normal Requires is enough. However, there are
some special situations where one might want more fine grained control over them. When multiple

Adding Dependency Information to a
Package

207

packages are being installed in a transaction, installation order and dependency loops are such cases.
Erasure order of packages within a transaction is the opposite of their installation order.

A very trivial example of a dependency loop is when package foo requires bar, and bar requires
foo. However, when the number of packages involved in a loop grows, the loops get more and
more complex. The special dependency types in this chapter are at best hints for RPM; as a rule of
thumb, it is best to try to avoid dependency loops altogether. However, in some rare cases, they may
be desired.

The PreReq Tag

The PreReq tag is the same as Requires, originally with one additional property. Using it used to
tell RPM that the package marked as PreReq should be installed before the package containing the
dependency. However, as of RPM version 4.4, this special property is being phased out, and Pre-
Req and Requires will soon have no functional differences.

A plain Requires is enough to ensure proper installation order if there are no dependency loops
present in the transaction. If dependency loops are present and cannot be avoided, packagers should
strive to construct them in a way that the order of installation of the the this way interdependent
packages does not matter.

Historically, in dependency loops PreReq used to "win" over the conventional Requires when
RPM determined the installation order in a transaction. But as said above, this functionality is being
phased out, and one should no longer assume things will work that way.

Context Marked Dependencies

Recent versions of RPM support context marked dependencies. This is a special type of a depend-
ency that applies only in a specified context. Using this feature, one can specify dependencies for
pre- and post(un)install scriptlets, ie. the context of a dependency is the execution time of the spe-
cified scriptlet.

The syntax for specifying these dependencies is:

Requires(X): foo

Here, X can be one of pre, post, preun, or postun, which tells RPM that the package depends on
package foo for running the corresponding %pre, %post, %preun, or %postun script.

In practice, RPM enforces the above dependencies until the specified script has been run, not at that
time. In other words, it will allow erasing a dependency that was marked for eg. the %post script
for an already installed package, but will not allow erasing one that is required for a %postun script
for such a package. This is to reduce confusion; it would be somewhat odd if RPM told one to in-
stall a package in order to get another one erased.

The Conflicts Tag
The Conflicts tag is the logical complement to the Requires tag. It is used to specify which pack-
ages conflict with the current package. RPM will not permit conflicting packages to be installed un-
less overridden with the --nodeps option.

The Conflicts tag has the same format as Requires. It accepts a real or virtual package name and
can optionally include version and release specifications or an epoch number.

The Provides Tag
Now that you've seen how it's possible to require a package using the Requires tag, you're probably
expecting that you'll need to use the Provides tag in every single package. After all, RPM has to get

Adding Dependency Information to a
Package

208

those package names from somewhere, right?

While it is true that RPM needs to have the package names available, the Provides tag is normally
not required. It would actually be redundant, because the RPM database already contains the name
of every package installed. There's no need to duplicate that information.

But wait — We said earlier that manual dependency requirements are always represented in terms
of packages. If RPM doesn't require the package builder to use the Provides tag to provide the pack-
age name, then what is the Provides tag used for?

Virtual Packages

Enter the virtual package. A virtual package is nothing more than a name specified with the
Provides tag. Virtual packages are handy when a package requires a certain capability, and that cap-
ability can be provided by any one of several packages. Here's an example:

In order to work properly, sendmail needs a local delivery agent to handle mail delivery. There are
a number of different local delivery agents available — sendmail will work just fine with any of
them.

In this case, it doesn't make sense to force the use of a particular local delivery agent; as long as
one's installed, sendmail's requirements will have been satisfied. So sendmail's package build-
er adds the following line to sendmail's spec file:

Requires: lda

There is no package with that name available, so sendmail's requirements must be met with a vir-
tual package. The creators of the various local delivery agents indicate that their packages satisfy the
requirements of the lda virtual package by adding the following line to their packages' spec files:

Provides: lda

(Note that virtual packages may not have version numbers.) Now, when sendmail is installed, as
long as there is a package installed that provides the lda virtual package, there will be no problem.

To Summarize…
RPM's dependency processing is based on tracking the capabilities a package provides, and the cap-
abilities a package requires. A package's requirements can come from two places:

1. Shared library requirements, automatically determined by RPM.

2. The Requires tag line, manually added to the package's spec file.

These requirements can be viewed by using RPM's --requires query option. A specific requirement
can be viewed by using the --whatrequires query option. Both options are fully described in
Chapter 5, Getting Information About Packages.

The capabilities a package provides, can come from three places:

1. Shared library sonames, automatically determined by RPM.

Adding Dependency Information to a
Package

209

2. The Provides tag line, manually added to the package's spec file.

3. The package's name (and optionally, version/epoch number).

The first two types of information can be viewed by using RPM's --provides query option. A specif-
ic capability can be viewed by using the --whatprovides query option. Both options are fully de-
scribed in Chapter 5, Getting Information About Packages.

The package name and version are not considered capabilities that are explicitly provided. There-
fore, if a search using --provides or --whatprovides comes up dry, try simply looking for a package
by that name.

As you've probably gathered by now, using manual dependencies requires some level of synchroniz-
ation between packages. This can be tricky, particularly if you're not responsible for both packages.
But RPM's dependency processing can make life easier for your users.

Adding Dependency Information to a
Package

210

1 Hey, we said it was hypothetical!
2 Of course, it would be possible to get around this lack of space by symlinking /opt to, for instance, /usr/opt. However, since the
point of this chapter is to explore RPM's relocatability features, we won't explore this approach here.

Chapter 15. Making a Relocatable
Package

RPM has the ability to give users some latitude in deciding where packages are to be installed on
their systems. However, package builders must first design their packages to give users this free-
dom.

That's all well and good, but why would the ability to "relocate" a package be all that important?

Why relocatable packages?
One of the many problems that plague a system administrator's life is disk space. Usually, there's not
enough of it, and if there is enough, chances are it's in the wrong place. Here's a hypothetical ex-
ample:

• Some new software comes out and is desired greatly by the user community.

• The system administrator carefully reviews the software's installation documentation prior to do-
ing to the installation. 1 She notes that the software, all 150MB of it, installs into /opt.

• Frowning, the sysadmin fires off a quick df command:

df

Filesystem 1024-blocks Used Available Capacity Mounted on
/dev/sda0 100118 28434 66514 30% /
/dev/sda6 991995 365527 575218 39% /usr

#

Bottom line: There's no way 150MB of new software is going to fit on the root filesystem. 2

• Sighing heavily, the sysadmin ponders what to do next. If only there were some way to install
the software somewhere on the /usr filesystem…

It doesn't have to be this way. RPM has the ability to make packages that can be installed with a
user-specified prefix that dictates where the software will actually be placed. By making packages
relocatable, the package builder can make life easier for sysadmins everywhere. But what exactly is
a relocatable package?

A relocatable package is a package that is standard in every way, save one. The difference lies in the
prefix tag. When this tag is added to a spec file, RPM will attempt to build a relocatable package.

Note the word "attempt". There are a few conditions that must be met before a relocatable package
can be built successfully, and this chapter will cover them all. But first, let's look at exactly how
RPM can relocate a package. And the one component at the heart of package relocation is the prefix
tag.

The prefix tag: Relocation Central
The best way to explain how the prefix tag is used is to step through an example. Here's a sample

211

prefix tag:

Prefix: /opt

In this example, the prefix path is defined as /opt. This means that, by default, the package will in-
stall its files under /opt. Let's assume the spec file contains the following line in its %files list:

/opt/bin/baz

If the package is installed without any relocation, this file will be installed in /opt/bin. This is
identical to how a non-relocatable package is installed.

However, if the package is to be relocated on installation, the path of every file in the %files list is
modified according to the following steps:

1. The part of the file's path that corresponds to the path specified on the prefix tag line is re-
moved.

2. The user-specified relocation prefix is prepended to the file's path.

Using our /opt/bin/baz file as an example, let's assume that the user installing the package
wishes to override the default prefix (/opt), with a new prefix, say, /usr/local/opt. Follow-
ing the steps above, we first remove the original prefix from the file's path:

/opt/bin/baz

becomes:

/bin/baz

Next, we add the user-specified prefix to the front of the remaining part of the filename:

/usr/local/opt + /bin/baz = /usr/local/opt/bin/baz

Now that the file's new path has been created, RPM installs the file normally. This part of it seems
simple enough, and it is. But as we mentioned above, there are a few things the package builder
needs to consider before getting on the relocatable package bandwagon.

Relocatable Wrinkles: Things to Consider

Making a Relocatable Package

212

While it's certainly no problem to add a prefix tag line to a spec file, it's necessary to consider a few
other issues:

• Every file in the %files list must start with the path specified on the prefix tag line.

• The software must be written such that it can operate properly if relocated. Absolute symlinks
are a prime example of this.

• Other software must not rely on the relocatable package being installed in any particular loca-
tion.

Let's cover each of these issues, starting with the %files list.

%files List Restrictions
As mentioned above, each file in the %files list must start with the relocation prefix. If this isn't
done, the build will fail:

rpmbuild -ba cdplayer-1.0.spec

* Package: cdplayer
+ umask 022
+ echo Executing: %prep
…
Binary Packaging: cdplayer-1.0-1
Package Prefix = usr/local
File doesn't match prefix (usr/local): /usr/doc/cdplayer-1.0-1
File not found: /usr/doc/cdplayer-1.0-1
Build failed.

#

In our example, the build proceeded normally until the time came to create the binary package file.
At that point RPM detected the problem. The error message says it all: The prefix line in the spec
file (/usr/local) was not present in the first part of the file's (/usr/doc/cdplayer-1.0-1)
path. This stopped the build in its tracks.

The fact that every file in a relocatable package must be installed under the directory specified in the
prefix line, raises some issues. For example, what about a program that reads a configuration file
normally kept in /etc?

This question leads right into our next section.

Relocatable Packages Must Contain Relocatable Soft-
ware

While this section's title seems pretty obvious, it's not always easy to tell if a particular piece of soft-
ware can be relocated. Let's take a look at the question raised at the end of the previous section. If a
program has been written to read its configuration file from /etc, there are three possible ap-
proaches to making that program relocatable:

1. Set the prefix to /etc and package everything under /etc.

2. Package everything somewhere other than /etc and leave out the config file entirely.

3. Modify the program.

Making a Relocatable Package

213

The first approach would certainly work from a purely technical standpoint, but not many people
would be happy with a program that installed itself in /etc. So this approach isn't viable.

The second approach might be more appropriate, but it forces users to complete the install by having
them create the config file themselves. If RPM's goal is to make software easier to install and re-
move, this is not a viable approach, either!

The final approach might be the best. Once the program is installed, when the rewritten software is
first run, it could see that no configuration file existed in /etc, and create one.

However, even though this would work, when the time came to erase the package, the config file
would be left behind. RPM had never installed it, so RPM couldn't get rid of it. There's also the fact
that this approach is probably more labor intensive than most package builders would like.

None of these approaches are very appealing, are they? Some software just doesn't relocate very
well. In general, any of the following things are warning signs that relocation is going to be a prob-
lem:

• The software contains one or more files that must be installed in specific directories

• The software refers to system files using relative paths (Which is really just another way of say-
ing the software must be installed in a particular directory)

If these kinds of issues crop up, then making the software relocatable is going to be tough. And
there's still one issue left to consider.

The Relocatable Software Is Referenced By Other Soft-
ware

Even assuming the software is written so that it can be put in a relocatable package, there still might
be a problem. And that problem centers not on the relocatable software itself, but on other programs
that reference the relocatable software.

For example, there are times when a package needs to execute other programs. This might include
backup software that needs to send mail, or a communications program that needs to compress files.
If these underlying programs were relocatable, and not installed where other packages expect them,
then they would be of little use.

Granted, this isn't a common problem, but it can happen. And for the package builder interested in
building relocatable packages, it's an issue that needs to be explored. Unfortunately, this type of
problem can be the hardest to find.

If, however, a software product has been found to be relocatable, the mechanics of actually building
a relocatable package are pretty straightforward. Let's give it a try.

Building a Relocatable Package
For this example, we'll use our tried-and-true cdplayer application. Let's start by reviewing the
spec file for possible problems:

#
Example spec file for cdplayer app...
#
Summary:A CD player app that rocks!
Name: cdplayer
…
%files
%doc README

Making a Relocatable Package

214

/usr/local/bin/cdp
/usr/local/bin/cdplay
%doc /usr/local/man/man1/cdp.1
%config /etc/cdp-config

Everything looks all right, except for the %files list. There are files in /usr/local/bin, a man
page in /usr/local/man/man1, and a config file in /etc. A prefix of /usr/local would
work pretty well, except for that cdp-config file.

For the sake of this first build, we'll declare the config file unnecessary and remove it from the
%files list. We'll then add a prefix tag line, setting the prefix to /usr/local. After these changes
are made, let's try a build:

rpmbuild -ba cdplayer-1.0.spec

* Package: cdplayer
+ umask 022
+ echo Executing: %prep
Executing: %prep
+ cd /usr/src/redhat/BUILD
+ cd /usr/src/redhat/BUILD
+ rm -rf cdplayer-1.0
+ gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz
…
Binary Packaging: cdplayer-1.0-1
Package Prefix = usr/local
File doesn't match prefix (usr/local): /usr/doc/cdplayer-1.0-1
File not found: /usr/doc/cdplayer-1.0-1
Build failed.

#

The build proceeded normally up to the point of actually creating the binary package. The Pack-
age Prefix = usr/local line confirms that RPM picked up our prefix tag line. But the
build stopped — and on a file called /usr/doc/cdplayer-1.0-1. But that file isn't even in
the %files list. What's going on?

Take a closer look at the %files list. See the line that reads %doc README? In the section called
“The %doc Directive”, we discussed how the %doc directive creates a directory under /usr/doc.
That's the file that killed the build — the directory created by the %doc directive.

Let's temporarily remove that line from the %files list and try again:

rpmbuild -ba cdplayer-1.0.spec

* Package: cdplayer
+ umask 022
+ echo Executing: %prep
Executing: %prep
+ cd /usr/src/redhat/BUILD
+ cd /usr/src/redhat/BUILD
+ rm -rf cdplayer-1.0
+ gzip -dc /usr/src/redhat/SOURCES/cdplayer-1.0.tgz
…
Binary Packaging: cdplayer-1.0-1
Package Prefix = usr/local
Finding dependencies...
Requires (2): libc.so.5 libncurses.so.2.0
bin/cdp
bin/cdplay
man/man1/cdp.1

Making a Relocatable Package

215

3 For more information on the %docdir directive, please see the section called “The %docdir Directive”.
4 Install and erase-time scripts have an environment variable, RPM_INSTALL_PREFIX, that can be used to write scripts that are able to act
appropriately if the package is relocated. See the section called “Install/Erase-time Scripts” for more information.

90 blocks
Generating signature: 0
Wrote: /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm
+ umask 022
+ echo Executing: %clean
Executing: %clean
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
+ exit 0
Source Packaging: cdplayer-1.0-1
cdplayer-1.0.spec
cdplayer-1.0.tgz
82 blocks
Generating signature: 0
Wrote: /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

#

The build completed normally. Note how the files to be placed in the binary package file are listed,
minus the prefix of /usr/local. Some of you might be wondering why the cdp.1 file didn't
cause problems. After all, it had a %doc directive, too. The answer lies in the way the file was spe-
cified. Since the file was specified using an absolute path, and that path started with the prefix /
usr/local, there was no problem. A more complete discussion of the %doc directive can be
found in the section called “The %doc Directive”.

Tying Up the Loose Ends
In the course of building this package, we ran into two hitches:

1. The config file cdp-config couldn't be installed in /etc.

2. The README file could not be packaged using the %doc directive.

Both of these issues are due to the fact that the files' paths do not start with the default prefix path /
usr/local. Does this mean this package cannot be relocated? Possibly, but there are two options
to consider. The first option is to review the prefix. In the case of our example, if we chose a prefix
of /usr instead of /usr/local, the README file could be packaged using the %doc directive,
since the default documentation directory is /usr/doc. Another approach would be to use the
%docdir directive to define another documentation-holding directory somewhere along the prefix
path. 3

This approach wouldn't work for /etc/cdp-config, though. To package that file, we'd need to
resort to more extreme measures. Basically, this approach would entail packaging the file in an ac-
ceptable directory (something under /usr/local) and using the %post post-install script to
move the file to /etc. Pointing a symlink at the config file is another possibility.

Of course, this approach has some problems. First, you'll need to write a %postun script to undo
what the %post script does. 4 A %verifyscript that made sure the files were in place would be nice,
too. Second, because the file or symlink wasn't installed by RPM, there's no entry for it in the RPM
database. This reduces the utility of RPM's -c and -d options when issuing queries. Finally, if you
actually move files around using the %post script, the files you move will not verify properly, and
when the package is erased, your users will get some disconcerting messages when RPM can't find
the moved files to erase them. If you have to resort to these kinds of tricks, it's probably best to for-
get trying to make the package relocatable.

Test-Driving a Relocatable Package

Making a Relocatable Package

216

Looks like cdplayer is a poor candidate for being made relocatable. However, since we did get a
hamstrung version to build successfully, we can use it to show how to test a relocatable package.

First, let's see if the binary package file's prefix has been recorded properly. We can do this by using
the --queryformat option to RPM's query mode:

rpm -qp --queryformat '%{DEFAULTPREFIX}\n' cdplayer-1.0-1.i386.rpm

/usr/local

#

The DEFAULTPREFIX tag directs RPM to display the prefix used during the build. As we can
see, it's /usr/local, just as we intended. The --queryformat option is discussed in the section
called “ --queryformat — Construct a Custom Query Response ”.

So it looks like we have a relocatable package. Let's try a couple of installs and see if we really can
install it in different locations. First, let's try a regular install with no prefix specified:

rpm -Uvh cdplayer-1.0-1.i386.rpm

cdplayer ##

#

That seemed to work well enough. Let's see if the files went where we intended:

ls -al /usr/local/bin

total 558
-rwxr-xr-x 1 root root 40739 Oct 7 13:23 cdp*
lrwxrwxrwx 1 root root 18 Oct 7 13:40 cdplay -> /usr/local/bin/cdp*
…
ls -al /usr/local/man/man1
total 9
-rwxr-xr-x 1 root root 4550 Oct 7 13:23 cdp.1*
…

#

Looks good. Let's erase the package and reinstall it with a different prefix:

rpm -e cdplayer
rpm -Uvh --prefix /usr/foonly/blather cdplayer-1.0-1.i386.rpm

cdplayer ##

#

(We should mention that directories foonly and blather didn't exist prior to installing cd-
player.)

RPM has another tag that can be used with the --queryformat option. It's called INSTALLPRE-
FIX and using it displays the prefix under which a package was installed. Let's give it a try:

Making a Relocatable Package

217

rpm -q --queryformat '%{INSTALLPREFIX}\n' cdplayer

/usr/foonly/blather

#

As we can see, it displays the prefix we entered on the command line. Let's see if the files were in-
stalled as we directed:

cd /usr/foonly/blather/
ls -al

total 2
drwxr-xr-x 2 root root 1024 Oct 7 13:45 bin/
drwxr-xr-x 3 root root 1024 Oct 7 13:45 man/

#

So far, so good — the proper directories are there. Let's look at the man page first:

cd /usr/foonly/blather/man/man1/
ls -al

total 5
-rwxr-xr-x 1 root root 4550 Oct 7 13:23 cdp.1*

#

That looks ok. Now on to the files in bin:

cd /usr/foonly/blather/bin
ls -al

total 41
-rwxr-xr-x 1 root root 40739 Oct 7 13:23 cdp*
lrwxrwxrwx 1 root root 18 Oct 7 13:45 cdplay -> /usr/local/bin/cdp

#

Uh-oh. That cdplay symlink isn't right. What happened? If we look at cdplayer's makefile, we
see the answer:

install: cdp cdp.1.Z
…
ln -s /usr/local/bin/cdp /usr/local/bin/cdplay

Ah, when the software is installed during RPM's build process, the make file sets up the symbolic
link. Looking back at the %files list, we see cdplay listed. RPM blindly packaged the symlink,
complete with its non-relocatable string. This is why we mentioned absolute symlinks as a prime ex-
ample of non-relocatable software.

Making a Relocatable Package

218

Fortunately, this problem isn't that difficult to fix. All we need to do is change the line in the make-
file that creates the symlink from:

ln -s /usr/local/bin/cdp /usr/local/bin/cdplay

To:

ln -s ./cdp /usr/local/bin/cdplay

Now cdplay will always point to cdp, no matter where it's installed. When building relocatable
packages, relative symlinks are your friend!

After rebuilding the package, let's see if our modifications have the desired effect. First, a normal in-
stall with the default prefix:

rpm -Uvh cdplayer-1.0-1.i386.rpm

cdplayer ##

cd /usr/local/bin/
ls -al cdplay

lrwxrwxrwx 1 root root 18 Oct 8 22:32 cdplay -> ./cdp*

#

Next, we'll try a second install using the --prefix option (after we first delete the original package):

rpm -e cdplayer
rpm -Uvh --prefix /a/dumb/prefix cdplayer-1.0-1.i386.rpm

cdplayer ##

cd /a/dumb/prefix/bin/
ls -al cdplay

lrwxrwxrwx 1 root root 30 Oct 8 22:34 cdplay -> ./cdp*

#

As you can see, the trickiest part about building relocatable packages is making sure the software
you're packaging is up to the task. Once that part of the job is done, the actual modifications are
straightforward.

In the next chapter, we'll cover how packages can be built in non-standard directories, as well as
how non-root users can build packages.

Making a Relocatable Package

219

Chapter 16. Making a Package That
Can Build Anywhere

While RPM makes building packages as easy as possible, some of the default design decisions
might not work well in a particular situation. Here are two situations where RPM's method of pack-
age building may cause problems:

1. You are unable to dedicate a system to RPM package building, or the software you're pack-
aging would disrupt the build system's operation if it were installed.

2. You would like to package software, but you don't have root access to an appropriate build sys-
tem.

Either of these situations can be resolved by directing RPM to build, install, and package the soft-
ware in a different area on your build system. It requires a bit of additional effort to accomplish this,
but taken a step at a time, it is not difficult. Basically, the process can be summed up by addressing
the following steps:

• Writing the package's spec file to support a build root.

• Directing RPM to build software in a user-specified build area.

• Specifying file attributes that RPM needs to set on installation.

The methods discussed here are not required in every situation. For example, a system administrator
developing a package on a production system may only need to add support for a build root. On the
other hand, a student wishing to build a package on a university system will need to get around the
lack of root access by implementing every method described here.

Using Build Roots in a Package
Part of the process of packaging software with RPM is to actually build the software and install it on
the build system. The installation of software can only be accomplished by someone with root ac-
cess, so a non-privileged user will certainly need to handle RPM's installation phase differently.
There are times, however, when even a person with root access will not want RPM to copy new files
into the system's directories. As mentioned above, the reasons might be due to the fact that the soft-
ware being packaged is already in use on the build system. Another reason might be as mundane as
not having enough free space available to perform the install into the default directories.

Whatever the reason, RPM provides the ability to direct a given package to install into an alternate
root. This alternate root is known as a build root. Several requirements must be met in order for a
build root to be utilized:

• A default build root must be defined in the package's spec file.

• The installation method used by the software being packaged must be able to support installation
in an alternate root.

The first part is easy. It entails adding the following line to the spec file:

BuildRoot: <root>

220

1 Keep in mind that the build root can be overridden at build-time using the --buildroot option or the buildroot rpmmacros file entry. See
Chapter 12, rpmbuild Command Reference for more details.

Of course, you would replace <root> with the name of the directory in which you'd like the soft-
ware to install. 1 If, for example, you specify a build root of /tmp/foo, and the software you're
packaging installs a file bar in /usr/bin, you'll find bar residing in /tmp/foo/usr/bin
after the build.

A note for you non-root package builders: make sure you can actually write to the build root you
specify! Those of you with root access should also make sure you choose your build root carefully.
For an assortment of reasons, it's not a good idea to declare a build root of "/"! We'll get into the
reasons why shortly.

The final requirement for adding build root support is to make sure the software's installation meth-
od can support installing into an alternate root. The difficulty in meeting this requirement can range
from dead simple to nearly impossible. There are probably as many different ways of approaching
this as there are packages to build. But in general, some variant of the following approach is used:

• The environment variable RPM_BUILD_ROOT is set by RPM and contains the value of the
build root to be used when the software is built and installed.

• The %install section of the spec file is modified to use RPM_BUILD_ROOT as part of the in-
stallation process.

• If the software is installed using make, the makefile is modified to use RPM_BUILD_ROOT and
to create any directories that may not exist at installation time.

Here's an example of how these components work together to utilize a build root. First, there's the
definition of the build root in the spec file:

BuildRoot: /tmp/cdplayer

This line defines the build root as being /tmp/cdplayer. All the files installed by this software
will be placed under the cdplayer directory. Next is the spec file's %install section:

%install
make ROOT="$RPM_BUILD_ROOT" install

Since the software we're packaging uses make to perform the actual install, we simply define the
environment variable ROOT to be the path defined by RPM_BUILD_ROOT. So far, so good. Things
really start to get interesting in the software's Makefile, though:

install: cdp cdp.1.Z
chmod 755 cdp
cp cdp /usr/local/bin

install -m 755 -o 0 -g 0 -d $(ROOT)/usr/local/bin/
install -m 755 -o 0 -g 0 cdp $(ROOT)/usr/local/bin/cdp

ln -s /usr/local/bin/cdp /usr/local/bin/cdplay
ln -s ./cdp $(ROOT)/usr/local/bin/cdplay

cp cdp.1 /usr/local/man/man1

Making a Package That Can Build
Anywhere

221

install -m 755 -o 0 -g 0 -d $(ROOT)/usr/local/man/man1/
install -m 755 -o 0 -g 0 cdp.1 $(ROOT)/usr/local/man/man1/cdp.1

In the example above, the commented lines were the original ones. The uncommented lines perform
the same function, but also support installation in the root specified by the environment variable
ROOT.

One point worth noting is that the Makefile now takes extra pains to make sure the proper direct-
ory structure exists before installing any files. This is often necessary, as build roots are deleted, in
most cases, after the software has been packaged. This is why install is used with the -d option — to
make sure the necessary directories have been created.

Let's see how it works:

rpmbuild -ba cdplayer-1.0.spec

* Package: cdplayer
Executing: %prep
+ cd /usr/src/redhat/BUILD
…
+ exit 0
Executing: %build
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
…
+ exit 0
+ umask 022
Executing: %install
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
+ make ROOT=/tmp/cdplayer install
install -m 755 -o 0 -g 0 -d /tmp/cdplayer/usr/local/bin/
install -m 755 -o 0 -g 0 cdp /tmp/cdplayer/usr/local/bin/cdp
ln -s ./cdp /tmp/cdplayer/usr/local/bin/cdplay
install -m 755 -o 0 -g 0 -d /tmp/cdplayer/usr/local/man/man1/
install -m 755 -o 0 -g 0 cdp.1 /tmp/cdplayer/usr/local/man/man1/cdp.1
+ exit 0
Executing: special doc
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
+ DOCDIR=/tmp/cdplayer//usr/doc/cdplayer-1.0-1
+ rm -rf /tmp/cdplayer//usr/doc/cdplayer-1.0-1
+ mkdir -p /tmp/cdplayer//usr/doc/cdplayer-1.0-1
+ cp -ar README /tmp/cdplayer//usr/doc/cdplayer-1.0-1
+ exit 0
Binary Packaging: cdplayer-1.0-1
Finding dependencies...
Requires (2): libc.so.5 libncurses.so.2.0
usr/doc/cdplayer-1.0-1
usr/doc/cdplayer-1.0-1/README
usr/local/bin/cdp
usr/local/bin/cdplay
usr/local/man/man1/cdp.1
93 blocks
Generating signature: 0
Wrote: /usr/src/redhat/RPMS/i386/cdplayer-1.0-1.i386.rpm
+ umask 022
+ echo Executing: %clean
Executing: %clean
+ cd /usr/src/redhat/BUILD
+ cd cdplayer-1.0
+ exit 0
Source Packaging: cdplayer-1.0-1
cdplayer-1.0.spec
cdplayer-1.0.tgz

Making a Package That Can Build
Anywhere

222

82 blocks
Generating signature: 0
Wrote: /usr/src/redhat/SRPMS/cdplayer-1.0-1.src.rpm

#

Looking over the output from the %install section, we first see that the RPM_BUILD_ROOT envir-
onment variable in the make install command, has been replaced with the path specified earlier in
the spec file on the BuildRoot: line. The ROOT environment variable used in the makefile now has
the appropriate value, as can be seen in the various install commands that follow.

Note, also, that we use install's -d option to ensure that every directory in the path exists before we
actually install the software. Unfortunately, we can't do this and install the file in one command.

Looking at the section labeled Executing: special doc, we find that RPM is doing
something similar for us. It starts by making sure there is no pre-existing documentation directory.
Next, RPM creates the documentation directory and copies files into it.

The remainder of this example is identical to that of a package being built without a build root being
specified. However, although the output is identical, there is one crucial difference. When the binary
package is created, instead of simply using each line in the %files list verbatim, RPM prepends the
build root path first. If this wasn't done, RPM would attempt to find the files, relative to the system's
root directory, and would, of course, fail. Because of the automatic prepending of the build root, it's
important to not include the build root path in any %files list entry. Otherwise, the files would not
be found by RPM, and the build would fail.

Although RPM has to go through a bit of extra effort to locate the files to be packaged, the resulting
binary package is indistinguishable from the same package created without using a build root.

Some Things to Consider
Once the necessary modifications have been made to support a build root, it's necessary for the
package builder to keep some issues in mind. The first is that the build root specified in the spec file
can be overridden. RPM will set the build root (and therefore, the value of $RPM_BUILD_ROOT) to
one of the following values:

• The value of buildroot in the spec file.

• The value of buildroot in an rpmmacros file.

• The value following the --buildroot option on the command line.

Because of this, it's important that the spec file and the makefile be written in such a way that no as-
sumptions about the build root are made. The main issue is that the build root must not be hard-
coded anywhere. Always use the RPM_BUILD_ROOT environment variable!

Another issue to keep in mind is cleaning up after the build. Once software builds and is packaged
successfully, it's probably no longer necessary to leave the build root in place. Therefore, it's a good
idea to include the necessary commands in the spec file's %clean section. Here's an example:

%clean
rm -rf $RPM_BUILD_ROOT

Since RPM executes the %clean section after the binary package has been created, it's the perfect
place to delete the build root tree. In the example above, that's exactly what we're doing. We're also
doing the right thing by using the RPM_BUILD_ROOT, instead of a hard-coded path.

Making a Package That Can Build
Anywhere

223

The last issue to keep in mind revolves around the %clean section we just created. At the start of
the chapter, we mentioned that it's not a good idea to define a build root of "/". The %clean section
is why: If the build root was set to "/", the %clean section would blow away your root filesystem!
Keep in mind that this can bite you, even if the package's spec file doesn't specify "/" as a build
root. It's possible to use the --buildroot option to specify a dangerous build root, too:

rpmbuild -ba --buildroot / cdplayer-1.0.spec

But for all the possible hazards using build roots can pose for the careless, it's the only way to pre-
vent a build from disrupting the operation of certain packages on the build system. And for the per-
son wanting to build packages without root access, it's the first of three steps necessary to accom-
plish the task. The next step is to direct RPM to build the software in a directory other than RPM's
default one.

Having RPM Use a Different Build Area
While RPM's build root requires a certain amount of spec file and make file tweaking in order to get
it working properly, directing RPM to perform the build in a different directory is a snap. The hard-
est part is to create the directories RPM will use during the build process.

Setting up a Build Area
RPM's build area consists of five directories in the top-level:

1. The BUILD directory is where the software is unpacked and built.

2. The RPMS directory is where the newly created binary package files are written.

3. The SOURCES directory contains the original sources, patches, and icon files.

4. The SPECS directory contains the spec files for each package to be built.

5. The SRPMS directory is where the newly created source package files are written.

The description of the RPMS directory above, is missing one key point. Since the binary package
files are specific to an architecture, the directory actually contains one or more subdirectories, one
for each architecture. It is in these subdirectories that RPM will write the binary package files.

Let's start by creating the directories. We can even do it with one command:

% pwd
/home/ed
% mkdir mybuild\
? mybuild/BUILD\
? mybuild/RPMS\
? mybuild/RPMS/i386\
? mybuild/SOURCES\
? mybuild/SPECS\
? mybuild/SRPMS\
%

That's all there is to it. You may have noticed that we created a subdirectory to RPMS called i386
— This is the architecture-specific subdirectory for Intel x86-based systems, which is our example
build system.

Making a Package That Can Build
Anywhere

224

The next step in getting RPM to use a different build area is telling RPM where the new build area
is. And it's almost as easy as creating the build area itself.

Directing RPM to Use the New Build Area
All that's required to get RPM to start using the new build area is to define an alternate value for
topdir in an rpmmacros file. For the non-root user, this means putting the following line in a file
called .rpmmacros, located in your home directory:

%_topdir <path>

By replacing <path> with the path to the new build area's top-level directory, RPM will attempt to
use it the next time a build is performed. Using our newly created build area as an example, we'll set
topdir to /home/ed/mybuild:

%_topdir /home/ed/mybuild

That's all there is to it. Now it's time to try a build.

Performing a Build in a New Build Area
In the following example, a non-root user attempts to build the cdplayer package in a personal
build area. If the user has modified rpmrc file entries to change the default build area, the com-
mand used to start the build is just like the one used by a root user. Otherwise, the --buildroot op-
tion will need to be used:

% cd /home/ed/mybuild/SPECS
% rpmbuild -ba --buildroot /home/ed/mybuildroot cdplayer-1.0.spec

* Package: cdplayer
+ umask 022
Executing: %prep
+ cd /home/ed/mybuild/BUILD
+ cd /home/ed/mybuild/BUILD
+ rm -rf cdplayer-1.0
+ gzip -dc /home/ed/mybuild/SOURCES/cdplayer-1.0.tgz
+ tar -xvvf -
drwxrwxr-x root/users 0 Aug 20 20:58 1996 cdplayer-1.0/
-rw-r--r-- root/users 17982 Nov 10 01:10 1995 cdplayer-1.0/COPYING
…
+ cd /home/ed/mybuild/BUILD/cdplayer-1.0
+ chmod -R a+rX,g-w,o-w .
+ exit 0
Executing: %build
+ cd /home/ed/mybuild/BUILD
+ cd cdplayer-1.0
+ make
gcc -Wall -O2 -c -I/usr/include/ncurses cdp.c
…
Executing: %install
+ cd /home/ed/mybuild/BUILD
+ make ROOT=/home/ed/mybuildroot/cdplayer install
install -m 755 -o 0 -g 0 -d /home/ed/mybuildroot/cdplayer/usr/local/bin/
install: /home/ed/mybuildroot/cdplayer: Operation not permitted

Making a Package That Can Build
Anywhere

225

install: /home/ed/mybuildroot/cdplayer/usr: Operation not permitted
install: /home/ed/mybuildroot/cdplayer/usr/local: Operation not permitted
install: /home/ed/mybuildroot/cdplayer/usr/local/bin: Operation not
permitted
install: /home/ed/mybuildroot/cdplayer/usr/local/bin/: Operation not
permitted
make: *** [install] Error 1
Bad exit status

%

Things started off pretty well — The %prep section of the spec file unpacked the sources into the
new build area, as did the %build section. The build was proceeding normally in the user-specified
build area, and root access was not required. In the %install section, however, things started to fall
apart. What happened?

Take a look at that install command. The two options, "-o 0" and "-g 0", dictate that the directories
to be created in the build root are to be owned by the root account. Since the user performing this
build did not have root access, the install failed, and rightly so.

OK, let's remove the offending options and see where that gets us. Here's the install section of the
make file after our modifications:

install: cdp cdp.1.Z
install -m 755 -d $(ROOT)/usr/local/bin/
install -m 755 cdp $(ROOT)/usr/local/bin/cdp
rm -f $(ROOT)/usr/local/bin/cdplay
ln -s ./cdp $(ROOT)/usr/local/bin/cdplay
install -m 755 -d $(ROOT)/usr/local/man/man1/
install -m 755 cdp.1 $(ROOT)/usr/local/man/man1/cdp.1

We'll spare you from having to read through another build, but this time it completed successfully.
Now, let's put our sysadmin hat on and install the newly built package:

rpm -ivh cdplayer-1.0-1.i386.rpm

cdplayer ##

#

Well, that was easy enough. Let's take a look at some of the files and make sure everything looks
OK. We know there are some files installed in /usr/local/bin, so let's check those:

ls -al /usr/local/bin

-rwxr-xr-x 1 ed ed 40739 Sep 13 20:16 cdp*
lrwxrwxrwx 1 ed ed 47 Sep 13 20:34 cdplay -> ./cdp*

#

Looks pretty good… Wait a minute! What's up with the owner and group? The answer is simple:
User ed ran the build, which executed the make file, which ran install, which created the files.
Since ed created the files, they are owned by him.

This brings up an interesting point. Software must be installed with very specific file ownership and

Making a Package That Can Build
Anywhere

226

permissions. But a non-root user can't create files that are owned by anyone other than his or herself.
What is a non-root user to do?

Specifying File Attributes
In cases where the package builder cannot create the files to be packaged with the proper ownership
and permissions, the %attr macro can be used to make things right.

%attr — How Does It Work?
The %attr macro has the following format:

%attr(<mode>, <user>, <group>) <file>

• The <mode> is represented in traditional numeric fashion.

• The <user> is specified by the login name of the user. Numeric UIDs are not used, for reasons
we'll explore in a moment.

• The <group> is specified by the group's name, as entered in /etc/group. Numeric GIDs are
not used, either. Yes, we'll be discussing that, too!

• <file> represents the file. Shell-style globbing is supported.

There are a couple other wrinkles to using the %attr macro. If a particular file attribute doesn't need
to be specified, that attribute can be replaced with a dash "-" and %attr will not change it. Say, for
instance, that a package's files are installed with the permissions correctly set, as they almost always
are. Instead of having to go to the trouble of entering the permissions for each and every file, each
file can have the same %attr:

%attr(-, root, root)

This works for user and group specifications, as well.

The other wrinkle is that, although we've been showing the three file attributes separated by com-
mas, in reality they could be separated by spaces as well. Whichever delimiter you choose, it pays to
be consistent throughout a spec file.

Let's fix up cdplayer with a liberal sprinkling of %attrs. Here's what the %files list looks like
after we've had our way with it:

%files
%attr(-, root, root) %doc README
%attr(4755, root, root) /usr/local/bin/cdp
%attr(-, root, root) /usr/local/bin/cdplay
%attr(-, root, rot) /usr/local/man/man1/cdp.1

Making a Package That Can Build
Anywhere

227

A couple points are worth noting here. The line for README shows that multiple macros can be
used on a line — in this case, one to set file attributes, and one to mark the file as being documenta-
tion. The %attr for /usr/local/bin/cdp declares the file to be setuid root. If it sends a shiver
down your spine to know that anybody can create a package that will run setuid root when installed
on your system — Good! Just because RPM makes it easy to install software doesn't mean that you
should blindly install every package you find.

A single RPM command can quickly point out areas of potential problems and should be issued on
any package file whose creators you don't trust:

% rpm -qlvp ../RPMS/i386/cdplayer-1.0-1.i386.rpm

drwxr-xr-x- root root 1024 Sep 13 20:16 /usr/doc/cdplayer-1.0-1
-rw-r--r--- root root 1085 Nov 10 01:10 /usr/doc/cdplayer-1.0-1/README
-rwsr-xr-x- root root 40739 Sep 13 21:32 /usr/local/bin/cdp
lrwxrwxrwx- root root 47 Sep 13 21:32 /usr/local/bin/cdplay -> ./cdp
-rwxr-xr-x- root rot 4550 Sep 13 21:32 /usr/local/man/man1/cdp.1

%

Sure enough — there's that setuid root file. In this case we trust the package builder, so let's install
it:

rpm -ivh cdplayer-1.0-1.i386.rpm

cdplayer ##
group rot does not exist - using root

#

What's this about group "rot"? Looking back at the rpm -qlvp output, it looks like /
usr/local/man/man1/cdp.1 has a bogus group. Looking back even further, it's there in the
%attr for that file. Must have been a typo. We could pretend that RPM used advanced artificial in-
telligence technology to come to the same conclusion as we did and made the appropriate change,
but in reality, RPM simply used the only group identifier it could count on — root. RPM will do the
same thing if it can't resolve a user specification.

Let's look at some of the files the package installed, including that worrisome setuid root file:

ls /usr/local/bin

total 558
-rwsr-xr-x 1 root root 40739 Sep 13 21:32 cdp*
lrwxrwxrwx 1 root root 47 Sep 13 21:36 cdplay -> ./cdp*

#

RPM did just what it was supposed to — It gave the files the attributes specified by the %attr mac-
ros.

Betcha Thought We Forgot…
At the start of this section, we mentioned that the %attr macro wouldn't accept numeric uids or
gids, and we promised to explain why. The reason is simply that, even if a package requires a cer-
tain user or group to own the package's files, the user may not have the same uid/gid from system to
system. There — wasn't that simple?

Making a Package That Can Build
Anywhere

228

In the next chapter, we'll discuss how to make your packaged software safe against modification by
unscrupulous people. The name of the game is Pretty Good Privacy, and you'll see how signing
packages with PGP is easier than you think!

Making a Package That Can Build
Anywhere

229

Chapter 17. Adding PGP Signatures
to a Package

In this chapter, we'll explore the steps required to add a digital signature to a package, using the soft-
ware known as Pretty Good Privacy, or PGP. If you've used PGP before, you probably know
everything you'll need to start signing packages in short order.

On the other hand, if you feel you need a bit more information on PGP before starting, please refer
to Appendix G, An Introduction to PGP for a brief introduction. Once you feel comfortable with
PGP, come on back and learn how easy signing packages is…

Why Sign a Package?
The reason for signing a package is to provide authentication. With a signed package, it's possible
for your user community to verify that the package they have was in your possession at some time
and has not been changed since then. That "not changed" part is also a good reason to sign your
packages, as digital signatures are a very robust way to guard against any modifications to the pack-
age.

Of course, as with anything else in life, adding a digital signature to a package isn't an ironclad guar-
antee that everything is right with the package, but it's about as sure a thing as humans can make it.

Getting Ready to Sign
OK, we've convinced you that signing packages is a good idea. Now we've got to make sure PGP
and RPM are up to the task. As you might imagine, there are two parts to this process: one for PGP,
and one for RPM. Let's get PGP ready first.

Preparing PGP: Creating a Key Pair
There is really very little to be done to PGP, assuming it's been installed properly. The only thing re-
quired is to generate a key pair. As mentioned in our mini-primer on PGP, the key pair consists of a
secret key and a public key. In terms of signing packages, you will use your secret key to do the ac-
tual signing. Anyone interested in checking your signature will need your public key.

Creating a key pair is quite simple. All that's required is to issue a pgp -kg command, enter some in-
formation, and create some random bits. Here's an example key generating session:

pgp -kg

Pretty Good Privacy(tm) 2.6.3a - Public-key encryption for the masses.
(c) 1990-96 Philip Zimmermann, Phil's Pretty Good Software. 1996-03-04
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. government.
Current time: 1996/10/31 00:42 GMT

Pick your RSA key size:
1) 512 bits- Low commercial grade, fast but less secure
2) 768 bits- High commercial grade, medium speed, good security
3) 1024 bits- "Military" grade, slow, highest security

Choose 1, 2, or 3, or enter desired number of bits: 3

Generating an RSA key with a 1024-bit modulus.

You need a user ID for your public key. The desired form for this

230

user ID is your name, followed by your E-mail address enclosed in
<angle brackets>, if you have an E-mail address.
For example: John Q. Smith <12345.6789@compuserve.com>

Enter a user ID for your public key:

Example Key for RPM Book

You need a pass phrase to protect your RSA secret key.
Your pass phrase can be any sentence or phrase and may have many
words, spaces, punctuation, or any other printable characters.

Enter pass phrase: <passphrase> (Not echoed)
Enter same pass phrase again: <passphrase> (Still not echoed)

Note that key generation is a lengthy process.

We need to generate 952 random bits. This is done by measuring the
time intervals between your keystrokes. Please enter some random text
on your keyboard until you hear the beep:

(Many random characters were entered)

0 * -Enough, thank you.
..
................................**** ...****
Pass phrase is good. Just a moment....
Key signature certificate added.
Key generation completed.

#

Let's review each of the times PGP required information. The first thing PGP needed to know was
the key size we wanted. Depending on your level of paranoia, simply choose an appropriate key
size. In our example, we chose the "They're out to get me" key size of 1024 bits.

Next, we needed to choose a user ID for the key. The user ID should be descriptive and should also
include sufficient information for someone to contact you. We entered Example Key for RPM
Book, which goes against our suggestion, but is sufficient for the purposes of our example.

After entering a user ID, we needed to add a pass phrase. The pass phrase is used to protect your
secret key, so it should be something difficult for someone else to guess. It should also be memor-
able for you, because if you forget your pass phrase, you won't be able to use your secret key! I
entered a couple of words and numbers, put together in such a way that no one could ever guess I
typed rpm2kool4words

Oops…

The pass phrase is entered twice, to ensure that no typing mistakes were made. PGP also performs
some cursory checks on the pass phrase, ensuring that the phrase is at least somewhat secure.

Finally comes the strangest part of the key-generation process, creating random bits. This is done by
measuring the time between keystrokes. The secret here is to not hold down a key so that it auto-
repeats and to not wait several seconds between keystrokes. Simply start typing anything (even non-
sense text) until PGP tells you you've typed enough.

After generating enough random bits, PGP takes a minute or so to create the key pair. Assuming
everything completed successfully, you'll see an ending message similar to the one above. You'll
also find, in a subdirectory of your login directory called .pgp, the following files:

ls -al ~/.pgp

Adding PGP Signatures to a Package

231

total 6
drwxr-xr-x 2 root root 1024 Oct 30 19:44 .
drwxr-xr-x 5 root root 1024 Oct 30 19:44 ..
-rw------- 1 root root 176 Oct 30 19:44 pubring.bak
-rw------- 1 root root 331 Oct 30 19:44 pubring.pgp
-rw------- 1 root root 408 Oct 30 19:44 randseed.bin
-rw------- 1 root root 509 Oct 30 19:44 secring.pgp

#

For those interested in learning exactly what each file is, feel free to consult any of the fine books on
PGP. For the purposes of signing packages, all we need to know is where these files are located.

That's it! Now it's time to configure RPM to use your newly generated key.

Preparing RPM
RPM's configuration process is quite straightforward. It consists of adding a few rpmrc entries in a
file of your choice. For more information on rpmrc files in general, please see Appendix B, The rp-
mrc File.

The entries that need to be added to an rpmrc file are:

• signature

• pgp_name

• pgp_path

Let's check out the entries.

signature

The signature entry is used to select the type of signature that RPM is to use. At the time this book
was written, the only legal value is pgp. So you would enter:

signature: pgp

pgp_name

The pgp_name entry gives RPM the user ID of the key it is to sign packages with. In our key gener-
ation example, the user ID of the key we created was Example Key for RPM Book, so this is
what our entry should look like:

pgp_name: Example Key for RPM Book

pgp_path

The pgp_path entry is used to define the path to the directory where the keys are kept. This entry is
not needed if the environment variable PGPPATH has been defined. In our example, we didn't move
them from PGP's default location, which is in the subdirectory .pgp, off the user's login directory.

Adding PGP Signatures to a Package

232

1 The list of possible signature types can be found in the RPM sources, specifically signature.h in RPM's lib subdirectory.

Since we generated the key as root, our path is /root/.pgp. Therefore, our entry would look
like this:

pgp_path: /root/.pgp

And that's it. Now it's time to sign some packages.

Signing Packages
There are three different ways to sign a package:

1. Signing a package at build-time.

2. Replacing the signature on an already-existing package.

3. Adding a signature to an already-existing package.

Lets take a look at each one, starting with build-time signing.

--sign — Sign a Package At Build-Time
The --sign option is used to sign a package as it is being built. When this option is added to an RPM
build command, RPM will ask for your PGP pass phrase. If the pass phrase is correct, the build will
proceed. If not, the build stops immediately.

Here's an example of --sign in action:

rpmbuild -ba --sign blather-7.9.spec
Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.
* Package: blather
…
Binary Packaging: blather-7.9-1
Finding dependencies...
…
Generating signature: 1002
Wrote: /usr/src/redhat/RPMS/i386/blather-7.9-1.i386.rpm
…
Source Packaging: blather-7.9-1
…
Generating signature: 1002
Wrote: /usr/src/redhat/SRPMS/blather-7.9-1.src.rpm

#

Once the pass phrase is entered, there's very little that is different from a normal build. The only ob-
vious difference is the Generating signature message in both the binary and source pack-
aging sections. The number following the message indicates that the signature added was created us-
ing PGP. 1

Notice, that since RPM only signs the source and binary package files, only the -bb, and -ba options

Adding PGP Signatures to a Package

233

make any sense when used with --sign. This is due to the fact that only the -bb and -ba options cre-
ate package files.

If we issue a quick signature check using RPM's --checksig option, we can see that there is, in fact,
a PGP signature present:

rpm --checksig blather-7.9-1.i386.rpm

blather-7.9-1.i386.rpm: size pgp md5 OK

#

It's clear to see that, in addition to the usual size and MD5 signatures, the package has a PGP signa-
ture.

Multiple Builds? No Problem!

You might be wondering how the --sign option would work if more than one package is to be built.
Do you have to enter the pass phrase for every single package you build? The answer is no, as long
as you build the packages with a single RPM command. Here's an example:

rpmbuild -ba --sign b*.spec
Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.
* Package: blather
…
Binary Packaging: blather-7.9-1
…
Generating signature: 1002
Wrote: /usr/src/redhat/RPMS/i386/blather-7.9-1.i386.rpm
…
Source Packaging: blather-7.9-1
…
Generating signature: 1002
Wrote: /usr/src/redhat/SRPMS/blather-7.9-1.src.rpm
…
* Package: bother
…
Binary Packaging: bother-3.5-1
…
Generating signature: 1002
Wrote: /usr/src/redhat/RPMS/i386/bother-3.5-1.i386.rpm
…
Source Packaging: bother-3.5-1
…
Generating signature: 1002
Wrote: /usr/src/redhat/SRPMS/bother-3.5-1.src.rpm

#

Using the --sign option makes it as easy to sign one package as it is to sign one hundred. But what
happens if you need to change your public key? Will you need to rebuild every single one of your
packages just to update the signature?

--resign — Replace a Package's Signature(s)
As we mentioned at the end of the previous section, from time to time it may be necessary to change
your public key. Certainly this would be necessary if your key's security was compromised, but oth-
er, more mundane situations might require this.

Adding PGP Signatures to a Package

234

Fortunately, RPM has an option that permits you to replace the signature on an already-built pack-
age, with a new one. The option is called --resign, and here's an example of its use:

rpm --resign blather-7.9-1.i386.rpm
Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.
blather-7.9-1.i386.rpm:

#

While the output is not as exciting as a package build, the --resign option can be a life-saver if you
need to change a package's signature, and you don't want to rebuild.

As you might have guessed, the --resign option works properly on multiple package files:

rpm --resign b*.rpm
Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.
blather-7.9-1.i386.rpm:
bother-3.5-1.i386.rpm:

#

There Are Limits, However…

Unfortunately, older package files cannot be re-signed. The package file must be in version 3
format, at least. If you attempt to resign a package that is too old, here's what you'll see:

rpm --resign blah.rpm
Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.
blah.rpm:
blah.rpm: Can't re-sign v2.0 RPM

#

Not sure what version your package files are at? Just use the file command to check:

file blather-7.9-1.i386.rpm

blather-7.9-1.i386.rpm: RPM v3 bin i386 blather-7.9-1

#

The "v3" in file's output indicates the package file format.

--addsign — Add a Signature To a Package

Adding PGP Signatures to a Package

235

The --addsign option, as the name suggests, is used to add another signature to the package. It's
pretty easy to see why someone would want to have a package that had been signed by the package
builders. But what reason would there be for adding a signature to a package?

One reason to have more than one signature on a package would be to provide a means of docu-
menting the path of ownership from the package builder to the end-user.

As an example, the division of a company creates a package and signs it with the division's key. The
company's headquarters then checks the package's signature and adds the corporate signature to the
package, in essence stating that the signed package received by them is authentic.

Continuing the example, the doubly-signed package makes its way to a retailer. The retailer checks
the package's signatures and, when they check out, adds their signature to the package.

The package now makes its way to a company that wishes to deploy the package. After checking
every signature on the package, they know that it is an authentic copy, unchanged since it was first
created. Depending on the deploying company's internal controls, they may choose to add their own
signature, thereby reassuring their employees that the package has received their corporate "bless-
ing".

After this lengthy example, the actual output from the --addsign option is a bit anti-climactic:

rpm --addsign blather-7.9-1.i386.rpm
Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.
blather-7.9-1.i386.rpm:

#

If we check the signatures of this package, we'll be able to see the multiple signatures:

rpm --checksig blather-7.9-1.i386.rpm

blather-7.9-1.i386.rpm: size pgp pgp md5 OK

#

The two pgp's in --checksig's output clearly shows that the package has been signed twice.

A Few Caveats

As with the --resign option, the --addsign option cannot do its magic on pre-V3 package files:

rpm --addsign blah.rpm
Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.
blah.rpm:
blah.rpm: Can't re-sign v2.0 RPM

#

OK, the error message may not be 100% accurate, but you get the idea.

Adding PGP Signatures to a Package

236

Another thing to be aware of is that the --addsign option does not check for multiple identical signa-
tures. Although it doesn't make much sense to do so, RPM will happily let you add the same signa-
ture as many times as you'd like:

rpm --addsig blather-7.9-1.i386.rpm
Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.
blather-7.9-1.i386.rpm:

rpm --addsig blather-7.9-1.i386.rpm
Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.
blather-7.9-1.i386.rpm:

rpm --addsig blather-7.9-1.i386.rpm
Enter pass phrase: <passphrase> (Not echoed)

Pass phrase is good.
blather-7.9-1.i386.rpm:

rpm --checksig blather-7.9-1.i386.rpm

blather-7.9-1.i386.rpm: size pgp pgp pgp pgp md5 OK

#

As we can see from --checksig's output, the package now has four identical signatures. Maybe this
is the digital equivalent of pressing down extra hard while writing your name…

Adding PGP Signatures to a Package

237

Chapter 18. Creating Subpackages
In this chapter, we will explore one of RPM's more interesting capabilities: the capability to create
subpackages.

What Are Subpackages?
Very simply put, a subpackage is one of several package files created from a single spec file. RPM
has the ability to create a main package, along with one or more subpackages. Subpackages may
also be created without the main package. It's all up to the package builder.

Why Are They Needed?
If all the software in the world followed the usual "one source, one binary" structure, there would be
no need for subpackages. After all, RPM handles the building and packaging of a program into a
single package file just fine.

But software doesn't always conform to this simplistic structure. It's not unusual for software to sup-
port two or more different modes of operation. A client/server program, for example, comes in two
flavors: a client, and a server.

And it can get more complicated than that. Sometimes software relies on another program so com-
pletely that the two cannot be built separately. The result is often several packages.

While it is certainly possible that some convoluted procedure could be devised to force these kinds
of software into a single-package structure, it makes more sense to let RPM manage the creation of
subpackages. Why? From the package builder's viewpoint, the main reason to use subpackages is to
eliminate any duplication of effort.

By using subpackages, there's no need to maintain separate spec files and endure the resulting head-
aches when new versions of the software become available. By keeping everything in one spec file,
new software versions can be quickly integrated, and every related subpackage rebuilt with a single
command.

But that's enough of the preliminaries. Let's see how subpackages are created.

Our Example Spec File: Subpackages Galore!
Throughout this chapter, we'll be constructing a spec file that will consist of a number of subpack-
ages. Let's start by listing the spec file's requirements:

• The main package name is to be foo.

• The version is to be 2.7.

• There are three subpackages:

• The server subpackage, to be called foo-server.

• The client subpackage, to be called foo-client.

• The baz development library subpackage, to be called bazlib.

• The bazlib subpackage has a version of 5.6.

• Each subpackage will have its own summary and description tags.

238

Every spec file starts with a preamble, and this one is no different. In this case, the preamble will
contain the following tags:

Name: foo
Version: 2.7
Release: 1
Source: foo-2.7.tgz
License: probably not
Summary: The foo app, and the baz library needed to build it
Group: bogus/junque
%description
This is the long description of the foo app, and the baz library needed to
build it...

As we can see, there's nothing different here: this is an ordinary spec file so far. Let's delve into
things a bit more and see what we'll need to add to this spec file to create the subpackages we re-
quire.

Spec File Changes For Subpackages
The creation of subpackages is based strictly on the contents of the spec file. This doesn't mean that
you'll have to learn an entirely new set of tags, conditionals, and directives in order to create sub-
packages. In fact, you'll only need to learn one.

The primary change to a spec file is structural and starts with the definition of a preamble for each
subpackage.

The Subpackage's "Preamble"
When we introduced RPM package building in Chapter 10, The Basics of Developing With RPM,
we said that every spec file contains a preamble. The preamble contains a variety of tags that define
all sorts of information about the package. In a single package situation, the preamble must be at the
start of the spec file. The spec file we're creating will have one there, too.

When creating a spec file that will build subpackages, each subpackage also needs a preamble of its
own. These "sub-preambles" need only define information for the subpackage when that informa-
tion differs from what is defined in the main preamble. For example, if we wanted to define an in-
stallation prefix for a subpackage, we would add the appropriate prefix tag to that subpackage's pre-
amble. That subpackage would then be relocatable.

In a single-package spec file, there is nothing that explicitly identifies the preamble, other than its
position at the top of the file. For subpackages, however, we need to be a bit more explicit. So we
use the %package directive to identify the preamble for each subpackage.

The %package Directive

The %package directive actually performs two functions. As we mentioned above, it is used to de-
note the start of a subpackage's preamble. It also plays a role in forming the subpackage's name. As
an example, let's say the main preamble contains the following name tag:

name: foo

Later in the spec file, there is a %package directive:

Creating Subpackages

239

%package bar

This would result in the name of the subpackage being foo-bar.

In this way, it's easy to see the relationship of the subpackage to the main package (or other sub-
packages, for that matter). Of course, this naming convention might not be appropriate in every
case. So there is an option to the %package directive for just this circumstance.

Adding -n To the %package directive

The -n option is used to change the final name of a subpackage from
<mainpackage>-<subpackage> to <subpackage>. Let's modify the %package directive
in our example above to be:

%package -n bar

The result is that the subpackage name would then be bar instead of foo-bar.

Updating Our Spec File

Let's apply some of our newly found knowledge to the spec file we're writing. Here's the list of sub-
packages that we need to create:

• The server subpackage, to be called foo-server.

• The client subpackage, to be called foo-client.

• The baz development library subpackage, to be called bazlib.

Since our package name is foo, and since the %package directive creates subpackage names by
prepending the package name, the %package directives for the foo-server and foo-client
subpackages would be written as:

%package server
%package client

Since the baz library's package name is not to start with foo, we need to use the -n option on its
%package directive:

%package -n bazlib

Our requirements further state that foo-server and foo-client are to have the same version
as the main package.

Creating Subpackages

240

One of the time-saving aspects of using subpackages is that there is no need to duplicate information
for each subpackage if it is already defined in the main package. Therefore, since the main package's
preamble has a version tag defining the version as 2.7, the two subpackages that lack a version tag
in their preambles will simply inherit the main package's version definition.

Since the bazlib subpackage's preamble contains a version tag, it must have its own unique ver-
sion.

In addition, each subpackage must have its own summary tag.

So based on these requirements, our spec file now looks like this:

Name: foo
Version: 2.7
Release: 1
Source: foo-2.7.tgz
License: probably not
Summary: The foo app, and the baz library needed to build it
Group: bogus/junque
%description
This is the long description of the foo app, and the baz library needed to
build it...

%package server
Summary: The foo server

%package client
Summary: The foo client

%package -n bazlib
Version: 5.6
Summary: The baz library

We can see the subpackage structure starting to appear now.

Required Tags In Subpackages

There are a few more tags we should add to the subpackages in our example spec file. In fact, if
these tags are not present, RPM will issue a most impressive warning:

rpmbuild -ba foo-2.7.spec

* Package: foo
* Package: foo-server
Field must be present : Description
Field must be present : Group
* Package: foo-client
Field must be present : Description
Field must be present : Group
* Package: bazlib
Field must be present : Description
Field must be present : Group

Spec file check failed!!
Tell rpm-list@redhat.com if this is incorrect.

#

Our spec file is incomplete. The bottom line is that each subpackage must have these three tags:

Creating Subpackages

241

1. The %description tag.

2. The group tag.

3. The summary tag.

It's easy to see that the first two tags are required, but what about summary? Well, we lucked out on
that one: we already included a summary for each subpackage in our example spec file.

Let's take a look at the %description tag first.

The %description Tag

As you've probably noticed, the %description tag differs from other tags. First of all, it starts with a
percent sign. Secondly, its data can span multiple lines. The third difference is that the
%description tag must include the name of the subpackage it describes. This is done by appending
the subpackage name to the %description tag itself. So given these %package directives:

%package server
%package client
%package -n bazlib

our %description tags would start with:

%description server
%description client
%description -n bazlib

Notice that we've included the -n option in the %description tag for bazlib. This was intentional,
as it makes the name completely unambiguous.

Our Spec File So Far…

OK, let's take a look at the spec file after we've added the appropriate %descriptions, along with
group tags for each subpackage:

Name: foo
Version: 2.7
Release: 1
Source: foo-2.7.tgz
License: probably not
Summary: The foo app, and the baz library needed to build it
Group: bogus/junque
%description
This is the long description of the foo app, and the baz library needed to
build it...

%package server
Summary: The foo server
Group: bogus/junque
%description server
This is the long description for the foo server...

Creating Subpackages

242

%package client
Summary: The foo client
Group: bogus/junque
%description client
This is the long description for the foo client...

%package -n bazlib
Version: 5.6
Summary: The baz library
Group: bogus/junque
%description -n bazlib
This is the long description for the bazlib...

Let's take a look at what we've done. We've created a main preamble as we normally would. We
then created three additional preambles, each starting with a %package directive. Finally, we added
a few tags to the subpackage preambles.

But what about version tags? Aren't the server and client subpackages missing them?

Not really. Remember that if a subpackage is missing a given tag, it will inherit the value of that tag
from the main preamble. We're well on our way to having a complete spec file, but we aren't quite
there yet.

Let's continue by looking at the next part of the spec file that changes when building subpackages.

The %files List
In an ordinary single-package spec file, the %files list is used to determine which files are actually
going to be packaged. It is no different when building subpackages. What is different, is that there
must be a %files list for each subpackage.

Since each %files list must be associated with a particular %package directive, we simply label
each %files list with the name of the subpackage, as specified by each %package directive. Going
back to our example, our %package lines were:

%package server
%package client
%package -n bazlib

Therefore, our %files lists should start with:

%files server
%files client
%files -n bazlib

In addition, we need the main package's %files list, which remains unnamed:

%files

Creating Subpackages

243

The contents of each %files list is dictated entirely by the software's requirements. If, for example, a
certain file needs to be packaged in more than one package, it's perfectly all right to include the file-
name in more than one list.

Controlling Packages With the %files List

The %files list wields considerable power over subpackages. It's even possible to prevent a package
from being created by using the %files list. But is there a reason why you'd want to go to the trouble
of setting up subpackages, only to keep one from being created?

Actually, there is. Take, for example, the case where client/server-based software is to be packaged.
Certainly, it makes sense to create two subpackages: one for the client and one for the server. But
what about the main package? Is there any need for it?

Quite often there's no need for a main package. In those cases, removing the main %files list en-
tirely will result in no main package being built.

A Point Worth Noting

Please keep in mind that an empty %files list (ie, a %files list that contains no files) is not the same
as not having a %files list at all. As we noted above, entirely removing a %files list results in RPM
not creating that package. However, if RPM comes across a %files list with no files, it will happily
create an empty package file.

This feature (which also works with subpackage %files lists) comes in handy when used in concert
with conditionals. If a %files list is enclosed by a conditional, the package will be created (or not)
based on the evaluation of the conditional.

Our Spec File So Far…

Ok, let's update our example spec file. Here's what it looks like after adding each of the subpack-
ages' %files lists:

Name: foo
Version: 2.7
Release: 1
Source: foo-2.7.tgz
License: probably not
Summary: The foo app, and the baz library needed to build it
Group: bogus/junque
%description
This is the long description of the foo app, and the baz library needed to
build it...

%package server
Summary: The foo server
Group: bogus/junque

%package client
Summary: The foo client
Group: bogus/junque

%package -n bazlib
Version: 5.6
Summary: The baz library
Group: bogus/junque

%files
/usr/local/foo-file

%files server
/usr/local/server-file

Creating Subpackages

244

1 Hey, we said it was a simple example!

%files client
/usr/local/client-file

%files -n bazlib
/usr/local/bazlib-file

As you can see we've added %files lists for:

• The main foo package.

• The foo-server subpackage.

• The foo-client subpackage.

• The bazlib subpackage.

Each package contains a single file. 1 If there was no need for a main package, we could simply re-
move the unnamed %files list. Keep in mind that even if you do not create a main package, the tags
defined in the main package's preamble will appear somewhere — specifically, in the source pack-
age file.

Let's look at the last subpackage-specific part of the spec file: the install- and erase-time scripts.

Install- and Erase-time Scripts
The install- and erase-time scripts, %pre, %preun, %post, and %postun, can all be named using
exactly the same method as was used for the other subpackage-specific sections of the spec file. The
script used during package verification, %verifyscript, can be made package-specific as well. Us-
ing the subpackage structure from our example spec file, we would end up with script definitions
like:

• %pre server

• %postun client

• %preun -n bazlib

• %verifyscript client

Other than the change in naming, there's only one thing to be aware of when creating scripts for sub-
packages. It's important that you consider the possibility of scripts from various subpackages inter-
acting with each other. Of course, this is simply good script-writing practice, even if the packages
involved are not related.

Back At the Spec File…

Here we've added some scripts to our spec file. So that our example doesn't get too complex, we've
just added preinstall scripts for each package:

Name: foo
Version: 2.7
Release: 1
Source: foo-2.7.tgz

Creating Subpackages

245

License: probably not
Summary: The foo app, and the baz library needed to build it
Group: bogus/junque
%description
This is the long description of the foo app, and the baz library needed to
build it...

%package server
Summary: The foo server
Group: bogus/junque
%description server
This is the long description for the foo server...

%package client
Summary: The foo client
Group: bogus/junque
%description client
This is the long description for the foo client...

%package -n bazlib
Version: 5.6
Summary: The baz library
Group: bogus/junque
%description -n bazlib
This is the long description for the bazlib...

%pre
echo "This is the foo package preinstall script"

%pre server
echo "This is the foo-server subpackage preinstall script"

%pre client
echo "This is the foo-client subpackage preinstall script"

%pre -n bazlib
echo "This is the bazlib subpackage preinstall script"

%files
/usr/local/foo-file

%files server
/usr/local/server-file

%files client
/usr/local/client-file

%files -n bazlib
/usr/local/bazlib-file

As pre-install scripts go, these don't do very much. But they will allow us to see how subpackage-specif-
ic scripts can be defined.

Those of you that have built packages before probably realize that our spec file is missing
something. Let's add that part now.

Build-Time Scripts: Unchanged For Subpack-
ages

While creating subpackages changes the general structure of the spec file, there's one section that
doesn't change: the build-time scripts. This means there is only one set of %prep, %build, and
%install scripts in any spec file.

Creating Subpackages

246

Of course, even if RPM doesn't require any changes to these scripts, you still might need to make
some subpackage-related changes to them. Normally these changes are related to doing whatever is
required to get the all the software unpacked, built, and installed. For example, if packaging client/
server software, the software for both the client and the server must be unpacked, and then both the
client and server binaries must be built and installed.

Our Spec File: One Last Look…
Let's add some build-time scripts and take a final look at the spec file:

Name: foo
Version: 2.7
Release: 1
Source: foo-2.7.tgz
License: probably not
Summary: The foo app, and the baz library needed to build it
Group: bogus/junque
%description
This is the long description of the foo app, and the baz library needed to
build it...

%package server
Summary: The foo server
Group: bogus/junque
%description server
This is the long description for the foo server...

%package client
Summary: The foo client
Group: bogus/junque
%description client
This is the long description for the foo client...

%package -n bazlib
Version: 5.6
Summary: The baz library
Group: bogus/junque
%description -n bazlib
This is the long description for the bazlib...

%prep
%setup

%build
make

%install
make install

%pre
echo "This is the foo package preinstall script"

%pre server
echo "This is the foo-server subpackage preinstall script"

#%pre client
#echo "This is the foo-client subpackage preinstall script"

%pre -n bazlib
echo "This is the bazlib subpackage preinstall script"

%files
/usr/local/foo-file

%files server

Creating Subpackages

247

2 This is the advantage to making up an example. A more real-world spec file would undoubtedly have more interesting scripts.

/usr/local/server-file

%files client
/usr/local/client-file

%files -n bazlib
/usr/local/bazlib-file

As you can see, the build-time scripts are about as simple as they can be. 2

Building Subpackages
Now it's time to give our example spec file a try. The build process is not that much different from a
single-package spec file:

rpmbuild -ba foo-2.7.spec

* Package: foo
* Package: foo-server
* Package: foo-client
* Package: bazlib
…
Executing: %prep
…
Executing: %build
…
Executing: %install
…
Executing: special doc
+ cd /usr/src/redhat/BUILD
+ cd foo-2.7
+ DOCDIR=//usr/doc/foo-2.7-1
+ DOCDIR=//usr/doc/foo-server-2.7-1
+ DOCDIR=//usr/doc/foo-client-2.7-1
+ DOCDIR=//usr/doc/bazlib-5.6-1
+ exit 0
Binary Packaging: foo-2.7-1
Finding dependencies...
usr/local/foo-file
1 block
Generating signature: 0
Wrote: /usr/src/redhat/RPMS/i386/foo-2.7-1.i386.rpm
Binary Packaging: foo-server-2.7-1
Finding dependencies...
usr/local/server-file
1 block
Generating signature: 0
Wrote: /usr/src/redhat/RPMS/i386/foo-server-2.7-1.i386.rpm
Binary Packaging: foo-client-2.7-1
Finding dependencies...
usr/local/client-file
1 block
Generating signature: 0
Wrote: /usr/src/redhat/RPMS/i386/foo-client-2.7-1.i386.rpm
Binary Packaging: bazlib-5.6-1
Finding dependencies...
usr/local/bazlib-file
1 block
Generating signature: 0
Wrote: /usr/src/redhat/RPMS/i386/bazlib-5.6-1.i386.rpm

Creating Subpackages

248

3 Five, if you count the source package.

…
Source Packaging: foo-2.7-1
foo-2.7.spec
foo-2.7.tgz
4 blocks
Generating signature: 0
Wrote: /usr/src/redhat/SRPMS/foo-2.7-1.src.rpm

#

Starting at the top, we start the build with the usual command. Immediately following the command,
RPM indicates that four packages are to be built from this spec file. The %prep, %build, and
%install scripts then execute as usual.

Next, RPM executes its "special doc" internal script, even though we haven't declared any files to be
documentation. It's worth noting, however, that the DOCDIR environment variables show that if the
spec file had declared some of the files as documentation, RPM would have created the appropriate
documentation directories for each of the packages.

At this point, RPM creates the binary packages. As we can see, each package contains the file
defined in its %files list.

Finally, the source package file is created. It contains the spec file and the original sources, just like
any other source package.

One spec file. One set of sources. One build command. Four packages. 3 All in all, a pretty good
deal, isn't it?

Giving Subpackages the Once-Over
Let's take a look at our newly created packages. As with any other package, each subpackage should
be tested by installing it on a system that has not had that software installed before. In this section,
we'll just snoop around the subpackages and point out how they differ from packages built one to a
spec file.

First, let's just look at each package's information:

rpm -qip foo-2.7-1.i386.rpm

Name : foo Distribution: (none)
Version : 2.7 Vendor: (none)
Release : 1 Build Date: Wed Nov 06 13:33:37 1996
Install date: (none) Build Host: foonly.rpm.org
Group : bogus/junque Source RPM: foo-2.7-1.src.rpm
Size : 35
Summary : The foo app, and the baz library needed to build it
Description :
This is the long description of the foo app, and the baz library needed to
build it...

#
rpm -qip foo-server-2.7-1.i386.rpm

Name : foo-server Distribution: (none)
Version : 2.7 Vendor: (none)
Release : 1 Build Date: Wed Nov 06 13:33:37 1996
Install date: (none) Build Host: foonly.rpm.org
Group : bogus/junque Source RPM: foo-2.7-1.src.rpm
Size : 42
Summary : The foo server
Description :
This is the long description for the foo server...

Creating Subpackages

249

#
rpm -qip foo-client-2.7-1.i386.rpm

Name : foo-client Distribution: (none)
Version : 2.7 Vendor: (none)
Release : 1 Build Date: Wed Nov 06 13:33:37 1996
Install date: (none) Build Host: foonly.rpm.org
Group : bogus/junque Source RPM: foo-2.7-1.src.rpm
Size : 42
Summary : The foo client
Description :
This is the long description for the foo client...

#
rpm -qip bazlib-5.6-1.i386.rpm

Name : bazlib Distribution: (none)
Version : 5.6 Vendor: (none)
Release : 1 Build Date: Wed Nov 06 13:33:37 1996
Install date: (none) Build Host: foonly.rpm.org
Group : bogus/junque Source RPM: foo-2.7-1.src.rpm
Size : 38
Summary : The baz library
Description :
This is the long description for the bazlib...

#

Here we've used RPM's query capability to display a list of summary information for each package.
A few points are worth noting.

First, each package lists foo-2.7-1.src.rpm as its source package file. This is the only way to
tell if two package files were created from the same set of sources. Trying to use a package's name
as an indicator is futile, as the bazlib package shows us.

The next thing to notice is that the summaries and descriptions for each package are specific to that
package. Since these tags were placed and named according to each package, that should be no sur-
prise.

Finally, we can see that each package's version has been either "inherited" from the main package's
preamble, or, as in the case of the bazlib package, the main package's version has been overrid-
den by a version tag added to bazlib's preamble.

If we look at the source package's information, we see that its information has been taken entirely
from the main package's set of tags:

rpm -qip foo-2.7-1.src.rpm

Name : foo Distribution: (none)
Version : 2.7 Vendor: (none)
Release : 1 Build Date: Wed Nov 06 13:33:37 1996
Install date: (none) Build Host: foonly.rpm.org
Group : bogus/junque Source RPM: (none)
Size : 1415
Summary : The foo app, and the baz library needed to build it
Description :
This is the long description of the foo app, and the baz library needed to
build it...

#

It's easy to see that if there was no %files list for the main package, and therefore, no main package,

Creating Subpackages

250

4 Yes, the author found out about this hard way!

the tags in the main preamble would still be used in the source package. This is why RPM enforces
the requirement that the main preamble contain copyright, %description, and group tags. So,
here's a word to the wise: Don't put something stupid in the main preamble's %description just to
satisfy RPM. Your witty saying will be immortalized for all time in every source package you dis-
tribute. 4

Verifying Subpackage-specific Install and Erase Scripts

The easiest way to verify that the %pre scripts we defined for each package were actually used is to
simply install each package:

rpm -Uvh foo-2.7-1.i386.rpm

foo This is the foo package preinstall script
##

#
rpm -Uvh foo-server-2.7-1.i386.rpm

foo-server This is the foo-server subpackage preinstall script
##

#
rpm -Uvh foo-client-2.7-1.i386.rpm

foo-client This is the foo-client subpackage preinstall script
##

#
rpm -Uvh bazlib-5.6-1.i386.rpm

bazlib This is the bazlib subpackage preinstall script
##

#

As expected, the unique %pre script for each package has been included. Of course, if we hadn't
wanted to actually install the packages, we could have used RPM's --scripts option to display the
scripts:

rpm -qp --scripts foo-2.7-1.i386.rpm

preinstall script:
echo "This is the foo package preinstall script"

postinstall script:
(none)
preuninstall script:
(none)
postuninstall script:
(none)
verify script:
(none)

#

This approach might be a bit safer, particularly if installing the newly built package would disrupt
operations on your build system.

Creating Subpackages

251

1 This is a somewhat simplistic view of the matter, as it's common for incompatibilities to crop up between two different implementations of
the same operating system on different architectures.

Chapter 19. Building Packages for
Multiple Architectures and Operating
Systems

While RPM certainly makes packaging software as easy as possible, it doesn't end there. RPM gives
you the tools you need to build a package on different types of computers. More importantly, RPM
makes it possible to build packages on different types of computers using a single spec file. Those
of you that have developed software for different computers know the importance of maintaining a
single set of sources. RPM lets you continue that practice through the package building phase.

Before we get into RPM's capabilities, let's do a quick review of what is involved in developing
software for different types of computer systems.

Architectures and Operating Systems: A
Primer

From a software engineering standpoint, there are only two major differences between any two com-
puter systems:

1. The architecture implemented by the computer's hardware.

2. The system software running on the computer.

The first difference is built into the computer. The architecture is the manner in which the computer
system was designed. It includes the number and type of registers present in the processor, the num-
ber of machine instructions, what operations they perform, and so on. For example, every "PC"
today, no matter who built it, is based on the Intel x86 architecture.

The second difference is more under our control. The operating system is software that controls how
the system operates. Different operating systems have different methods of storing information on
disk, different ways of implementing functions used by programs, and different hardware require-
ments.

As far as package building is concerned, two systems with the same architecture running two differ-
ent operating systems, are as different as two systems with different architectures running the same
operating system. In the first case, the software being packaged for different operating systems will
differ due to the differences between the operating systems. In the second case, the software being
packaged for different architectures will differ due to the underlying differences in hardware. 1

RPM supports differences in architecture and operating system equally. If there is a tag, rpmrc file
entry, or conditional that is used to support architectural differences, there is a corresponding tag,
entry, or conditional that supports operating system differences.

Let's Just Call Them Platforms
In order to keep the duplication in this chapter to a minimum, we'll refer to a computer of a given ar-
chitecture running a given operating system as a platform. If another system differs in either aspect,
it is considered a different platform.

OK, now that we've gotten through the preliminaries, let's look at RPM's multi-platform capabilities.

252

What Does RPM Do To Make Multi-Platform
Packaging Easier?

As we mentioned above, RPM supports multi-platform package building through a set of tags, rp-
mrc file entries, and conditionals. None of these tools are difficult to use. In fact, the hardest part of
multi-platform package building is figuring out how the software needs to be changed to support
different platforms.

Let's take a look at each multi-platform tool RPM provides.

Automatic Detection of Build Platform
The first thing necessary for easy multi-platform package building is to identify which platform the
package is to be built for. Except in the fairly esoteric case of cross-compilation, the build platform
is the platform on which the package is built. RPM does this for you automatically, although it can
be overridden at build-time.

Automatic Detection of Install Platform
The other important platform in package building is the platform on which the package is to be in-
stalled. Here again, RPM does this for you, though it's possible to override this when the package is
installed.

But there is more to multi-platform package building than simply being able to determine the plat-
form during package building and installation. The next component in multi-platform package
building is a set of platform-dependent tags.

Platform-Dependent Tags
RPM uses a number of tags that control which platforms can build a package. These tags make it
easier for the package builder to build multiple packages automatically, since the tags will keep
RPM from attempting to build packages that are incompatible with the build platform.

Platform-Dependent Conditionals
While the platform-dependent tags provide a crude level of multi-platform control (i.e., the package
will be built or not, depending on the tags and the build platform), RPM's platform-dependent condi-
tionals provide a much finer level of control. By using these conditionals, it's possible to excise
those parts of the spec file that are specific to another platform and replace them with one or more
lines that are compatible with the build platform.

Now that we have a basic idea of RPM's multi-platform support features, let's take a more in-depth
look at each one.

Build and Install Platform Detection
As we mentioned above, the first step to multi-platform package building is to identify the build
platform. This is done by matching information from the build system's uname output against a
number of rpmrc file entries.

Normally, it's not necessary to worry too much about the following rpmrc file entries, as RPM
comes with a set of entries that support all platforms that currently run RPM. However, when
adding support for new platforms, it will be necessary to use the following entries to add support for
the new build platform.

Platform-Specific rpmrc Entries

Building Packages for Multiple Ar-
chitectures and Operating Systems

253

Normally, the file /usr/lib/rpmrc contains the following rpmrc file entries. They can be
overridden by entries in /etc/rpmrc or ~/.rpmrc. This is discussed more completely in Ap-
pendix B, The rpmrc File.

Because each entry type is available in both architecture and operating system flavors, we'll just use
xxx in place of arch and os in the following descriptions.

xxx_canon — Define Canonical Platform Name and Number

The xxx_canon entry is used to convert information obtained from the system running RPM into a
canonical name and number that RPM will use internally. Here's the format:

xxx_canon: <label>: <string> <value>

The <label> is compared against information from uname(2). If a match is found, then
<string> is used by RPM as the canonical name, and <value> is used as a unique numeric
value. Here are two examples:

arch_canon: sun4: sparc 3
os_canon: Linux: Linux 1

The arch_canon tag above is used to define the canonical architecture information for Sun Mi-
crosystems' SPARC architecture. In this case, the output from uname is compared against sun4. If
there's a match, the canonical architecture name is set to sparc and the architecture number is set to
3.

The os_canon tag above is used to define the canonical operating system information for the Linux
operating system. In this case, the output from uname is compared against Linux. If there's a match,
the canonical operating system name is set to Linux, and the operating system number is set to 1.

The description above is not 100% complete — There is an additional step performed during the
time RPM gets the system information from uname, and compares it against a canonical name.
Next, let's look at the rpmrc file entry that comes into play during this intermediate step.

buildxxxtranslate — Define Build Platform

The buildxxxtranslate entry is used to define the build platform information. Specifically, these
entries are used to create a table that maps information from uname to the appropriate architecture/op-
erating system name.

The buildxxxtranslate entry looks like this:

buildxxxtranslate: <label>: <string>

The <label> is compared against information from uname(2). If a match is found, then
<string> is used by RPM as the build platform information, after it has been canonicalized by
xxx_canon. Here are two examples:

buildarchtranslate: i586: i386

Building Packages for Multiple Ar-
chitectures and Operating Systems

254

buildostranslate: Linux: Linux

The buildarchtranslate tag shown above is used to define the build architecture for an Intel Penti-
um (or i586 as it's shown here) processor. Any Pentium-based system will, by default, build pack-
ages for the Intel 80386 (or i386) architecture.

The buildostranslate tag shown above is used to define the build operating system for systems run-
ning the Linux operating system. In this case, the build operating system remains unchanged.

xxx_compat — Define Compatible Architectures

The xxx_compat entry is used to define which architectures and operating systems are compatible
with one another. It is used at install-time only. The format of the entry is:

xxx_compat: <label>: <list>

The <label> is a name string as defined by an xxx_canon entry. The <list> following it con-
sists of one or more names, also defined by arch_canon. If there is more than one name in the list,
they should be separated by a space.

The names in the list are considered compatible to the name specified in the label.

arch_compat: i586: i486
arch_compat: i486: i386
os_compat: Linux: AIX

The arch_compat lines shown above illustrate how a family of upwardly compatible architectures
may be represented. For example, if the build architecture was defined as an i586, the compatible ar-
chitectures would be i486, and i386. However, if the build system was an i486, the only compatible
architecture would be an i386.

While the os_compat line shown above is entirely fictional, its purpose would be to declare AIX
compatible with Linux. If it were only that simple…

Overriding Platform Information At Build-Time
By using the rpmrc file entries discussed above, RPM usually makes the right decisions in select-
ing the build and install platforms. However, there might be times when RPM's selections aren't the
best. Normally the circumstances are unusual, as in the case of cross-compiling software. In these
cases, it is nice to have an easy way of overriding the build-time architecture and operating system.

The --buildarch and --buildos options can be used to set the build-time architecture and operating
system rather than relying on RPM's automatic detection capabilities. These options are added to a
normal RPM build command. One important point to remember is that, although RPM does try to
find the specified architecture name, it does no checking as to the sanity of the entered architecture
or operating system. For example, if you enter an entirely fictional operating system, RPM will is-
sue a warning message, and then happily build a package for it.

Why? Wouldn't it make more sense for RPM to perform some sort of sanity check? In a word, no.
One of RPM's main design goals was to never get in the way of the package builder. If someone has
a need to override their build platform information, they should know what they're doing, and what
the full implications of their actions are.

Bottom line: Unless you know why you need to use --buildarch or --buildos, you probably don't

Building Packages for Multiple Ar-
chitectures and Operating Systems

255

need to use them.

Overriding Platform Information At Install-Time
It's also possible to direct RPM to ignore platform information while a package is being installed.
The --ignorearch and --ignoreos options, when added to any install or upgrade command, will dir-
ect RPM to proceed with the install or upgrade, even if the package's platform doesn't match the in-
stall platform.

Dangerous? Yes. But it can be indispensable in certain circumstances. Like the ability to override
platform information at build-time, unless you know why you need to use --ignorearch or -
-ignoreos, you probably don't need to use them.

optflags — The Other rpmrc File Entry
While the optflags entry doesn't play a part in determining the build or install platform, it does play
a role in multi-platform package building. The optflags entry is used to define a standard set of op-
tions that can be used during the build process, specifically during compilation.

The optflags entry looks like this:

optflags: <architecture> <value>

For example, assume the following optflags entries were placed in an rpmrc file:

optflags: i386 -O2 -m486 -fno-strength-reduce
optflags: sparc -O2

If RPM was running on an Intel 80386-compatible architecture, the optflags value would be set to -
O2 -m486 -fno-strength-reduce. If, however, RPM was running on a Sun SPARC-based system,
optflags would be set to -O2.

This entry sets the RPM_OPT_FLAGS environment variable, which can be used in the %prep,
%build, and %install scripts.

Platform-Dependent Tags
Once RPM has determined the build platform's information, that information can be used in the
build process. The first way this information can be used is to determine whether a given package
should be built on a given platform. This is done through the use of four tags that can be added to a
spec file.

There can be many reasons to do this. For example, the software may not build correctly on a given
platform. Or the software may be platform-specific, such that packaging the software on any other
platform, while technologically possible, would really make no sense.

The real world is not always so clear-cut, so there might even be cases where a package should be
built on, say, three different platforms, but no others. By carefully using the following tags, any con-
ceivable situation can be covered.

Like the rpmrc file entries we've already discussed, there are identical tags for architecture and op-
erating system, so we'll discuss them together.

The excludexxx Tag

Building Packages for Multiple Ar-
chitectures and Operating Systems

256

The excludexxx tags are used to direct RPM to insure that the package does not attempt to build on
the excluded platforms. One or more platforms may be specified after the excludexxx tags, separ-
ated by either spaces or commas. Here are two examples:

ExcludeArch: sparc alpha
ExcludeOS: Irix

The first line prevents systems based on the Sun SPARC and Digital Alpha/AXP architectures from
attempting to build the package. The second line insures that the package will not be built for the
Silicon Graphics operating system, Irix.

If a build is attempted on an excluded architecture or operating system, the following message will
be displayed, and the build will fail:

rpmbuild -ba cdplayer-1.0.spec

Arch mismatch!
cdplayer-1.0.spec doesn't build on this architecture

#

The excludexxx tags are meant to explicitly prevent a finite set of architectures or operating sys-
tems from building a package. If your goal is to insure that a package will only build on one archi-
tecture, then you should use the exclusivexxx tags.

The exclusivexxx Tag
The exclusivexxx tags are used to direct RPM to only build the package on the specified platforms.
These tags insure that, in the future, no brand-new platform will mistakenly attempt to build the
package. RPM will build the package on the specified platforms only.

The syntax of the exclusivexxx tags is identical to excludexxx:

ExclusiveArch: sparc alpha
ExclusiveOS: Irix

In the first line, the package will only build on a Sun SPARC or Digital Alpha/AXP system. In the
second, the package will only be built on the Irix operating system.

The exclusivexxx tags are meant to explicitly allow a finite set of architectures or operating sys-
tems to build a package. If your goal is to insure that a package will not build on a specific platform,
then you should use the excludexxx tag.

Platform-Dependent Conditionals
Of course, the control exerted by the excludexxx and exclusivexxx tags over package building is
often too coarse. There may be packages, for example, that would build just fine on another plat-
form, if only you could substitute a platform-specific patch file or change some paths in the %files
list.

The key to exerting this kind of platform-specific control in the spec file is to use RPM's condition-

Building Packages for Multiple Ar-
chitectures and Operating Systems

257

als. The conditionals provide a general-purpose means of constructing a platform-specific version of
the spec file during the actual build process.

Common Features of All Conditionals
There are a few things that are common to each conditional, so let's discuss them first. The first
thing is that conditionals are block-structured. The second is that conditionals can be nested. Finally,
conditionals can span any part of the spec file.

Conditionals Are Block Structured

Every conditional is block-structured — in other words, the conditional begins at a certain point
within the spec file and continues some number of lines until it is ended. This forms a block that
will be used or ignored, depending on the platform the conditional is checking for, as well as the
build platform itself.

Every conditional starts with a line beginning with the characters %if and is followed by one of four
platform-related conditions. Every conditional ends with a line containing the characters %endif.

Ignoring the platform-related conditions for a moment, here's an example of a conditional block:

%ifos Linux
Summary: This is a package for the Linux operating system
%endif

It's a one-line block, but a block nonetheless.

There's also another style of conditional block. As before, it starts with a %if, and ends with a
%endif. But there's something new in the middle:

%ifos Linux
Summary: This is a package for the Linux operating system
%else
Summary: This is a package for some other operating system
%endif

Here we've replaced one summary tag with another.

Conditionals Can Be Nested

Conditionals can be nested — That is, the block formed by one conditional can enclose another con-
ditional. Here's an example:

%ifarch i386

echo "This is an i386"

%ifos Linux
echo "This is a Linux system"
%else
echo "This is not a Linux system"
%endif

Building Packages for Multiple Ar-
chitectures and Operating Systems

258

%else

echo "This is not an i386"

%endif

In this example, the first conditional block formed by the %ifarch i386 line contains a complete
%ifos — %else — %endif conditional. Therefore, if the build system was Intel-based, the %ifos
conditional would be tested. If the build system was not Intel-based, the %ifos conditional would
not be tested.

Conditionals Can Cross Spec File Sections

The next thing each conditional has in common is that there is no limit to the number of lines a con-
ditional block can contain. You could enclose the entire spec file within a conditional, if you like.
But it's much better to use conditionals to insert only the appropriate platform-specific contents.

Now that we have the basics out of the way, let's take a look at each of the conditionals and see how
they work.

%ifxxx
The %ifxxx conditionals are used to control the inclusion of a block, as long as the platform-de-
pendent information is true. Here are two examples:

%ifarch i386 alpha

In this case, the block following the conditional would be included only if the build architecture was
i386 or alpha.

%ifos Linux

This example would include the block following the conditional only if the operating system was
Linux.

%ifnxxx
The %ifnxxx conditionals are used to control the inclusion of a block, as long as the platform-de-
pendent information is not true. Here are two examples:

%ifnarch i386 alpha

In this case, the block following the conditional would be included only if the build architecture was
not i386 or alpha.

Building Packages for Multiple Ar-
chitectures and Operating Systems

259

%ifnos Linux

This example would include the block following the conditional only if the operating system was
not Linux.

Hints and Kinks
There isn't much in the way of hard and fast rules when it comes to multi-platform package build-
ing. But in general, the following uses of RPM's multi-platform capabilities seem to work the best:

• The excludexxx and exclusivexxx tags are best used when it's known there's no reason for the
package to be built on specific architectures.

• The %ifxxx and %ifnxxx conditionals are most likely to be used in the following areas:

• Controlling the inclusion of %patch macros for platform-specific patches.

• Setting up platform-specific initialization prior to building the software.

• Tailoring the %files list when the software creates platform-specific files.

Given that some software is more easily ported to different platforms than others, this list is far from
complete. If there's one thing to remember about multi-platform package building, it's don't be afraid
to experiment!

Building Packages for Multiple Ar-
chitectures and Operating Systems

260

Chapter 20. Real-World Package
Building

In Chapter 11, Building Packages: A Simple Example, we packaged a fairly simple application.
Since our goal was to introduce package building, we kept things as simple as possible. However,
things aren't always that simple in the real world.

In this chapter, we'll package a more complex application that will call on most of RPM's capabilit-
ies. We'll start with a general overview of the application and end with a completed package, just as
you would if you were tasked with packaging an application that you'd not seen before.

So without further ado, let's meet amanda…

An Overview of Amanda
Amanda is a network backup utility. The name amanda stands for "Advanced Maryland Automatic
Network Disk Archiver". If the word "Maryland" seems somewhat incongruous, it helps to realize
that the program was developed at the University of Maryland by James Da Silva, and has sub-
sequently been enhanced by many people around the world.

The sources are available at ftp.cs.umd.edu, in directory /pub/amanda. At the time of writ-
ing, the latest version of amanda is version 2.3.0. Therefore, it should come as no surprise that the
amanda source tar file is called amanda-2.3.0.tar.gz.

As with most network-centric applications, amanda has a server component, and a client component.
An amanda server controls how the various client systems are backed up to the server's tape drive.
Each amanda client uses the operating system's native dump utility to perform the actual backup,
which is then compressed and sent to the server. A server can back itself up simply by having the
client software installed and configured, just like any other client system.

The software builds with make, and most customization is done in two .h files in the config sub-
directory. A fair amount of documentation is available in the doc subdirectory. All in all, amanda is
a typical non-trivial application.

Amanda can be built on several Unix-based operating systems. In this chapter, we'll build and pack-
age amanda for Red Hat Linux Linux version 4.0.

Initial Building Without RPM
Since amanda can be built on numerous platforms, there needs to be some initial customization
when first building the software. Since customization implies that mistakes will be made, we'll start
off by building amanda without any involvement on the part of RPM.

But before we can build amanda, we have to get it and unpack it, first.

Setting Up A Test Build Area
As we mentioned above, the home FTP site for amanda is ftp.cs.umd.edu. The sources are in
/pub/amanda.

After getting the sources, it's necessary to unpack them. We'll unpack them into RPM's SOURCES
directory, so that we can keep all our work in one place:

tar zxvf amanda-2.3.0.tar.gz

amanda-2.3.0/
amanda-2.3.0/COPYRIGHT

261

amanda-2.3.0/Makefile
amanda-2.3.0/README
…
amanda-2.3.0/man/amtape.8
amanda-2.3.0/tools/
amanda-2.3.0/tools/munge
…

As we saw, the sources unpacked into a directory called amanda-2.3.0. Let's rename that direct-
ory to amanda-2.3.0-orig, and unpack the sources again:

ls

total 177
drwxr-xr-x 11 adm games 1024 May 19 1996 amanda-2.3.0/
-rw-r--r-- 1 root root 178646 Nov 20 10:42 amanda-2.3.0.tar.gz

mv amanda-2.3.0 amanda-2.3.0-orig
tar zxvf amanda-2.3.0.tar.gz

amanda-2.3.0/
amanda-2.3.0/COPYRIGHT
amanda-2.3.0/Makefile
amanda-2.3.0/README
…
amanda-2.3.0/man/amtape.8
amanda-2.3.0/tools/
amanda-2.3.0/tools/munge

ls

total 178
drwxr-xr-x 11 adm games 1024 May 19 1996 amanda-2.3.0/
drwxr-xr-x 11 adm games 1024 May 19 1996 amanda-2.3.0-orig/
-rw-r--r-- 1 root root 178646 Nov 20 10:42 amanda-2.3.0.tar.gz

#

Now why did we do that? The reason lies in the fact that we will undoubtedly need to make changes
to the original sources in order to get amanda to build on Linux. We'll do all our hacking in the
amanda-2.3.0 directory, and leave the amanda-2.3.0-orig untouched.

Since one of RPM's design features is to build packages from the original, unmodified sources, that
means the changes we'll make will need to be kept as a set of patches. The amanda-2.3.0-orig
directory will let us issue a simple recursive diff command to create our patches when the time
comes.

Now that our sources are unpacked, it's time to work on building the software.

Getting Software to build
Looking at the docs/INSTALL file, we find that the steps required to get amanda configured and
ready to build are actually fairly simple. The first step is to modify tools/munge to point to cpp,
the C preprocessor.

Amanda uses CPP to create makefiles containing the appropriate configuration information. This
approach is a bit unusual, but not unheard of. In munge, we find the following section:

Customize CPP to point to your system's C preprocessor.

Real-World Package Building

262

if cpp is on your path:
CPP=cpp

if cpp is not on your path, try one of these:
CPP=/lib/cpp # traditional
CPP=/usr/lib/cpp # also traditional
CPP=/usr/ccs/lib/cpp # Solaris 2.x

Since cpp exists in /lib on Red Hat Linux, we need to change this part of munge to:

Customize CPP to point to your system's C preprocessor.

if cpp is on your path:
#CPP=cpp

if cpp is not on your path, try one of these:
CPP=/lib/cpp # traditional
CPP=/usr/lib/cpp # also traditional
CPP=/usr/ccs/lib/cpp # Solaris 2.x

Next, we need to take a look in config/ and create two files:

1. config.h — contains platform-specific configuration information

2. options.h — contains site-specific configuration information

There are a number of example config.h files for a number of different platforms. There is a
Linux-specific version, so we copy that file to config.h and review it. After a few changes to re-
flect our Red Hat Linux Linux environment, it's ready. Now let's turn our attention to options.h.

In the case of options.h, there's only one example file called options.h-vanilla. As the
name implies, this is a basic file that contains a series of #defines that configure amanda for a typic-
al environment. We'll need to make a few changes:

• Define the paths to common utility programs.

• Keep the programs from being named with the suffix -2.3.0.

• Define the directories where the programs should be installed.

While the first change is pretty much standard fare for anyone used to building software, the last two
changes are really due to RPM. With RPM, there's no need to name the programs with a version-
specific name, as RPM can easily upgrade to a new version and even downgrade back, if the new
version doesn't work as well. The default paths amanda uses segregate the files so that they can be
easily maintained. With RPM, there's no need to do this, since every file installed by RPM gets writ-
ten into the database. In addition, Red Hat Linux systems adhere to the File System Standard, so any
package destined for Red Hat systems should really be FSSTND-compliant, too. Fortunately for us,
amanda was written to make these types of changes easy. But even if we had to hack an installation
script, RPM would pick up the changes as part of its patch handling.

We'll spare you the usual discovery of typos, incompatibilities, and the resulting rebuilds. After an
undisclosed number of iterations, our config.h and options.h files are perfect. Amanda
builds:

Real-World Package Building

263

make

Making all in common-src
make[1]: Entering directory `/usr/src/redhat/SOURCES/amanda-2.3.0/common-src'
…
make[1]: Leaving directory `/usr/src/redhat/SOURCES/amanda-2.3.0/man'

#

As we noted, amanda is constructed so that most of the time changes will only be necessary in
tools/munge, and the two files in config. Our situation was no different — after all was said
and done, that was all we needed to hack.

Installing and testing
As we all know, just because software builds doesn't mean that it's ready for prime-time. It's neces-
sary to test it first. In order to test amanda, we need to install it. Amanda's makefile has an install
target, so let's use that to get started. We'll also get a copy of the output, because we'll need that
later:

make install

Making install in common-src
…
make[1]: Entering directory `/usr/src/redhat/SOURCES/amanda-2.3.0/client-src'
Installing Amanda client-side programs:
install -c -o bin amandad /usr/lib/amanda
install -c -o bin sendsize /usr/lib/amanda
install -c -o bin calcsize /usr/lib/amanda
install -c -o bin sendbackup-dump /usr/lib/amanda
install -c -o bin sendbackup-gnutar /usr/lib/amanda
install -c -o bin runtar /usr/lib/amanda
install -c -o bin selfcheck /usr/lib/amanda

Setting permissions for setuid-root client programs:
(cd /usr/lib/amanda ; chown root calcsize; chmod u+s calcsize)
(cd /usr/lib/amanda ; chown root runtar; chmod u+s runtar)

…
Making install in server-src
Installing Amanda libexec programs:
install -c -o bin taper /usr/lib/amanda
install -c -o bin dumper /usr/lib/amanda
install -c -o bin driver /usr/lib/amanda
install -c -o bin planner /usr/lib/amanda
install -c -o bin reporter /usr/lib/amanda
install -c -o bin getconf /usr/lib/amanda

Setting permissions for setuid-root libexec programs:
(cd /usr/lib/amanda ; chown root dumper; chmod u+s dumper)
(cd /usr/lib/amanda ; chown root planner; chmod u+s planner)

Installing Amanda user programs:
install -c -o bin amrestore /usr/sbin
install -c -o bin amadmin /usr/sbin
install -c -o bin amflush /usr/sbin
install -c -o bin amlabel /usr/sbin
install -c -o bin amcheck /usr/sbin
install -c -o bin amdump /usr/sbin
install -c -o bin amcleanup /usr/sbin
install -c -o bin amtape /usr/sbin

Setting permissions for setuid-root user programs:
(cd /usr/sbin ; chown root amcheck; chmod u+s amcheck)

…
Installing Amanda changer libexec programs:
install -c -o bin chg-generic /usr/lib/amanda

…

Real-World Package Building

264

1 Well, eventually it did!

Installing Amanda man pages:
install -c -o bin amanda.8 /usr/man/man8
install -c -o bin amadmin.8 /usr/man/man8
install -c -o bin amcheck.8 /usr/man/man8
install -c -o bin amcleanup.8 /usr/man/man8
install -c -o bin amdump.8 /usr/man/man8
install -c -o bin amflush.8 /usr/man/man8
install -c -o bin amlabel.8 /usr/man/man8
install -c -o bin amrestore.8 /usr/man/man8
install -c -o bin amtape.8 /usr/man/man8

…

#

OK, no major problems there. Amanda does require a bit of additional effort to get everything run-
ning, though. Looking at docs/INSTALL, we follow the steps to get amanda running on our test
system, as both a client and a server. As we perform each step, we note it for future reference:

• For the client:

1. Set up a ~/.rhosts file allowing the server to connect.

2. Make the disk device files readable by the client.

3. Make /etc/dumpdates readable and writable by the client.

4. Put an amanda entry in /etc/services.

5. Put an amanda entry in /etc/inetd.conf.

6. Issue a kill -HUP on inetd.

• For the server:

1. Create a directory to hold the server configuration files.

2. Modify the provided example configuration files to suit our site.

3. Add crontab entries to run amanda nightly.

4. Put an amanda entry in /etc/services.

Once everything is ready, we run a few tests. Everything performs flawlessly. 1 Looks like we've got
a good build. Let's start getting RPM involved.

Initial Building With RPM
Now that amanda has been configured, built, and is operational on our build system, it's time to have
RPM take over each of these tasks. The first task is to have RPM make the necessary changes to the
original sources. To do that, RPM needs a patch file.

Generating patches
The amanda-2.3.0 directory tree is where we did all our work building amanda. We need to take
all the work we've done in that directory tree and compare it against the original sources contained
in the amanda-2.3.0-orig directory tree. But before we do that, we need to clean things up a
bit.

Real-World Package Building

265

Cleaning up the test build area

Looking through our work tree, it has all sorts of junk in it: emacs save files, object files, and the ex-
ecutable programs. In order to generate a clean set of patches, all these extraneous files must go.
Looking over amanda's makefiles, there is a clean target that should take care of most of the junk:

make clean

Making clean in common-src
…
rm -f *~ *.o *.a genversion version.c Makefile.out
…
Making clean in client-src
…
rm -f amandad sendsize calcsize sendbackup-dump
sendbackup-gnutar runtar selfcheck *~ *.o Makefile.out
…
Making clean in server-src
…
rm -f amrestore amadmin amflush amlabel amcheck amdump
amcleanup amtape taper dumper driver planner reporter
getconf *~ *.o Makefile.out
…
Making clean in changer-src
…
rm -f chg-generic *~ *.o Makefile.out
…
Making clean in man
…
rm -f *~ Makefile.out
…

#

Looking in the tools and config directories where we did all our work, we see there are still
emacs save files there. A bit of studying confirms that the makefiles don't bother to clean these two
directories. That's a nice touch because a make clean won't wipe out old copies of the config files,
giving you a chance to go back to them in case you've botched something. However, in our case,
we're sure we won't need the save files, so out they go:

cd /usr/src/redhat/SOURCES/amanda-2.3.0
find . -name "*~" -exec rm -vf \;

./config/config.h~

./config/options.h~

./tools/munge~

#

We let find take a look at the whole directory tree, just in case there was something still out there
that we'd forgotten about. As you can see, the only save files are from the three files we've been
working on.

You'll note that we've left our modified munge file, as well as the config.h and options.h
files we so carefully crafted. That's intentional, as we want to make sure those changes are applied
when RPM patches the sources. Everything looks pretty clean, so it's time to make the patches.

Actually Generating patches

This step is actually pretty anticlimactic:

Real-World Package Building

266

diff -uNr amanda-2.3.0-orig/ amanda-2.3.0/ > amanda-2.3.0-linux.patch
#

With that one command, we've compared each file in the untouched directory tree (amanda-
2.3.0-orig) with the directory tree we've been working in (amanda-2.3.0). If we've done
our homework, the only things in the patch file should be related to the files we've changed. Let's
take a look through it to make sure:

cd /usr/src/redhat/SOURCES
cat amanda-2.3.0-linux.patch

diff -uNr amanda-2.3.0-orig/config/config.h amanda-2.3.0/config/config.h
--- amanda-2.3.0-orig/config/config.h Wed Dec 31 19:00:00 1969
+++ amanda-2.3.0/config/config.h Sat Nov 16 16:22:47 1996
@@ -0,0 +1,52 @@
…
diff -uNr amanda-2.3.0-orig/config/options.h amanda-2.3.0/config/options.h
--- amanda-2.3.0-orig/config/options.h Wed Dec 31 19:00:00 1969
+++ amanda-2.3.0/config/options.h Sat Nov 16 17:08:57 1996
@@ -0,0 +1,211 @@
…
diff -uNr amanda-2.3.0-orig/tools/munge amanda-2.3.0/tools/munge
--- amanda-2.3.0-orig/tools/munge Sun May 19 22:11:25 1996
+++ amanda-2.3.0/tools/munge Sat Nov 16 16:23:50 1996
@@ -35,10 +35,10 @@
Customize CPP to point to your system's C preprocessor.

if cpp is on your path:
-CPP=cpp
+# CPP=cpp

if cpp is not on your path, try one of these:
-# CPP=/lib/cpp # traditional
+CPP=/lib/cpp # traditional
CPP=/usr/lib/cpp # also traditional
CPP=/usr/ccs/lib/cpp # Solaris 2.x
#

The patch file contains complete copies of our config.h and options.h files, followed by the
changes we've made to munge. Looks good! Time to hand this grunt work over to RPM.

Making a first-cut spec file
Since amanda comes in two parts, it's obvious we'll need to use subpackages: one for the client soft-
ware, and one for the server. Given that, and the fact that the first part of any spec file consists of
tags that are easily filled in, let's sit down and fill in the blanks, tag-wise:

Summary: Amanda Network Backup System
Name: amanda
Version: 2.3.08
Release: 1
Group: System/Backup
License: BSD-like, but see COPYRIGHT file for details
Packager: Edward C. Bailey <bailey@rpm.org>
URL: http://www.cs.umd.edu/projects/amanda/
Source: ftp://ftp.cs.umd.edu/pub/amanda/amanda-2.3.0.tar.gz
Patch: amanda-2.3.0-linux.patch
%description

Real-World Package Building

267

Amanda is a client/server backup system. It uses standard tape
devices and networking, so all you need is any working tape drive
and a network. You can use it for local backups as well.

That part was pretty easy. We set the package's release number to 1. We'll undoubtedly be changing
that as we continue work on the spec file. You'll notice that we've included a URL tag line; the Uni-
form Resource Locator there points to the homepage for the amanda project, making it easier for the
user to get additional information on amanda.

The Source tag above includes the name of the original source tar file and is preceded by the URL
pointing to the file's primary location. Again, this makes it easy for the user to grab a copy of the
sources from the software's "birthplace".

Finally, the patch file that we've just created gets a line of its own on the Patch tag line. Next, let's
take a look at the tags for our two subpackages. Let's start with the client:

%package client
Summary: Client-side Amanda package
Group: System/Backup
Requires: dump
%description client
The Amanda Network Backup system contains software necessary to
automatically perform backups across a network. Amanda consists of
two packages -- a client (this package), and a server:

The client package enable a network-capable system to have its
filesystems backed up by a system running the Amanda server.

NOTE: In order for a system to perform backups of itself, install both
the client and server packages!

The %package directive names the package. Since we wanted the subpackages to be named aman-
da-<something>, we didn't use the -n option. This means our client subpackage will be called
amanda-client, just as we wanted. RPM requires unique summary, %description, and group
tags for each subpackage, so we've included them. Of course, it would be a good idea even if RPM
didn't require them — we've used the tags to provide client-specific information.

The requires tag is the only other tag in the client subpackage. Since amanda uses dump on the cli-
ent system, we included this tag so that RPM will ensure that the dump package is present on client
systems.

Next, let's take a look at the tags for the server subpackage:

%package server
Summary: Server-side Amanda package
Group: System/Backup
%description server
The Amanda Network Backup system contains software necessary to
automatically perform backups across a network. Amanda consists of
two package -- a client, and a server (this package):

The server package enables a network-capable system to control one
or more Amanda client systems performing backups. The server system
will direct all backups to a locally attached tape drive. Therefore,
the server system requires a tape drive.

NOTE: In order for a system to perform backups of itself, install both
the client and server packages!

Real-World Package Building

268

No surprises here, really. You'll note that the server subpackage has no requires tag for the dump
package. The reason for that is due to a design decision we've made. Since amanda is comprised of a
client and a server component, in order for the server system to perform backups of itself, the client
component must be installed. Since we've already made the client subpackage require dump, we've
already covered the bases.

Since an amanda server cannot back itself up without the client software, why don't we have the
server subpackage require the client subpackage? Well, that could be done, but the fact of the matter
is that there are cases where an amanda server won't need to back itself up. So the server subpackage
needs no package requirements.

Adding the build-time scripts

Next we need to add the build-time scripts. There's really not much to them:

%prep
%setup

%build
make

%install
make install

The %prep script consists of one line containing the simplest flavor of %setup macro. Since we
only need %setup to unpack one set of sources, there are no options we need to add.

The %build script is just as simple, with the single make command required to build amanda.

Finally, the %install script maintains our singe-line trend for build-time scripts. Here a simple
make install will put all the files where they need to be for RPM to package them.

Adding %files Lists

The last part of our initial attempt at a spec file is a %files list for each package the spec file will
build. Since we're planning on a client and a server subpackage, we'll need two %files lists. For the
time being, we'll just add the %files lines — we'll be adding the actual filenames later:

%files client

%file server

There's certainly more to come, but this is enough to get us started. And the first thing we want
RPM to do is to unpack the amanda sources.

Getting the original sources unpacked
In keeping with a step-by-step approach, RPM has an option that let's us stop the build process after
the %prep script has run. Let's give the -bp option a try, and see how things look:

Real-World Package Building

269

rpmbuild -bp amanda-2.3.0.spec

* Package: amanda
* Package: amanda-client
* Package: amanda-server
+ umask 022
+ echo Executing: %prep
Executing: %prep
+ cd /usr/src/redhat/BUILD
+ cd /usr/src/redhat/BUILD
+ rm -rf amanda-2.3.0
+ gzip -dc /usr/src/redhat/SOURCES/amanda-2.3.0.tar.gz
+ tar -xvvf -
drwxr-xr-x 3/20 0 May 19 22:10 1996 amanda-2.3.0/
-rw-r--r-- 3/20 1389 May 19 22:11 1996 amanda-2.3.0/COPYRIGHT
-rw-r--r-- 3/20 1958 May 19 22:11 1996 amanda-2.3.0/Makefile
-rw-r--r-- 3/20 11036 May 19 22:11 1996 amanda-2.3.0/README
…
-rw-r--r-- 3/20 2010 May 19 22:11 1996 amanda-2.3.0/man/amtape.8
drwxr-xr-x 3/20 0 May 19 22:11 1996 amanda-2.3.0/tools/
-rwxr-xr-x 3/20 2437 May 19 22:11 1996 amanda-2.3.0/tools/munge
+ [0 -ne 0]
+ cd amanda-2.3.0
+ cd /usr/src/redhat/BUILD/amanda-2.3.0
+ chown -R root.root .
+ chmod -R a+rX,g-w,o-w .
+ exit 0

#

By looking at the output, it would be pretty hard to miss the fact that the sources were unpacked. If
we look in RPM's default build area (/usr/src/redhat/BUILD), we'll see an amanda directory
tree:

cd /usr/src/redhat/BUILD/
ls -l

total 3
drwxr-xr-x 11 root root 1024 May 19 1996 amanda-2.3.0

#

After a quick look around, it seems like the sources were unpacked properly. But wait — where are
our carefully crafted configuration files in config? Why isn't tools/munge modified?

Getting patches properly applied
Ah, perhaps our %prep script was a bit too simple. We need to apply our patch. So let's add two
things to our spec file:

1. A patch tag line pointing to our patch file

2. A %patch macro in our %prep script

Easy enough. At the top of the spec file, along with the other tags, let's add:

Patch: amanda-2.3.0-linux.patch

Real-World Package Building

270

Then we'll make our %prep script look like this:

%prep
%setup
%patch -p 1

There, that should do it. Let's give that -bp option another try:

rpmbuild -bp amanda-2.3.0.spec

* Package: amanda
* Package: amanda-client
* Package: amanda-server
+ umask 022
+ echo Executing: %prep
Executing: %prep
+ cd /usr/src/redhat/BUILD
+ cd /usr/src/redhat/BUILD
+ rm -rf amanda-2.3.0
+ gzip -dc /usr/src/redhat/SOURCES/amanda-2.3.0.tar.gz
+ tar -xvvf -
drwxr-xr-x 3/20 0 May 19 22:10 1996 amanda-2.3.0/
-rw-r--r-- 3/20 1389 May 19 22:11 1996 amanda-2.3.0/COPYRIGHT
-rw-r--r-- 3/20 1958 May 19 22:11 1996 amanda-2.3.0/Makefile
-rw-r--r-- 3/20 11036 May 19 22:11 1996 amanda-2.3.0/README
…
-rw-r--r-- 3/20 2010 May 19 22:11 1996 amanda-2.3.0/man/amtape.8
drwxr-xr-x 3/20 0 May 19 22:11 1996 amanda-2.3.0/tools/
-rwxr-xr-x 3/20 2437 May 19 22:11 1996 amanda-2.3.0/tools/munge
+ [0 -ne 0]
+ cd amanda-2.3.0
+ cd /usr/src/redhat/BUILD/amanda-2.3.0
+ chown -R root.root .
+ chmod -R a+rX,g-w,o-w .
+ echo Patch #0:
Patch #0:
+ patch -p1 -s
+ exit 0

#

Not much difference, until the very end, where we see the patch being applied. Let's take a look into
the build area and see if our configuration files are there:

cd /usr/src/redhat/BUILD/amanda-2.3.0/config
ls -l

total 58
-rw-r--r-- 1 root root 7518 May 19 1996 config-common.h
-rw-r--r-- 1 root root 1846 Nov 20 20:46 config.h
-rw-r--r-- 1 root root 2081 May 19 1996 config.h-aix
-rw-r--r-- 1 root root 1690 May 19 1996 config.h-bsdi1
…
-rw-r--r-- 1 root root 1830 May 19 1996 config.h-ultrix4
-rw-r--r-- 1 root root 0 Nov 20 20:46 config.h.orig
-rw-r--r-- 1 root root 7196 Nov 20 20:46 options.h
-rw-r--r-- 1 root root 7236 May 19 1996 options.h-vanilla

Real-World Package Building

271

-rw-r--r-- 1 root root 0 Nov 20 20:46 options.h.orig

#

Much better. Those zero-length .orig files are a dead giveaway that patch has been here, as are
the dates on config.h, and options.h. In the tools directory, munge has been modified,
too. These sources are ready for building!

Letting RPM do the Building
We know that the sources are ready. We know that the %build script is ready. There shouldn't be
much in the way of surprises if we let RPM build amanda. Let's use the -bc option to stop things
after the %build script completes:

rpmbuild -bc amanda-2.3.0.spec

* Package: amanda
* Package: amanda-client
* Package: amanda-server
…
echo Executing: %build
Executing: %build
+ cd /usr/src/redhat/BUILD
+ cd amanda-2.3.0
+ make
Making all in common-src
make[1]: Entering directory `/usr/src/redhat/BUILD/amanda-2.3.0/common-src'
../tools/munge Makefile.in Makefile.out
make[2]: Entering directory `/usr/src/redhat/BUILD/amanda-2.3.0/common-src'
cc -g -I. -I../config -c error.c -o error.o
cc -g -I. -I../config -c alloc.c -o alloc.o
…
Making all in man
make[1]: Entering directory `/usr/src/redhat/BUILD/amanda-2.3.0/man'
../tools/munge Makefile.in Makefile.out
make[2]: Entering directory `/usr/src/redhat/BUILD/amanda-2.3.0/man'
make[2]: Nothing to be done for `all'.
make[2]: Leaving directory `/usr/src/redhat/BUILD/amanda-2.3.0/man'
make[1]: Leaving directory `/usr/src/redhat/BUILD/amanda-2.3.0/man'
+ exit 0

#

As we thought, no surprises. A quick look through the build area shows a full assortment of binar-
ies, all ready to be installed. So it seems that the most natural thing to do next would be to let RPM
install amanda.

Letting RPM do the Installing
And that's just what we're going to do! Our %install script has the necessary make install com-
mand, so let's give it a shot:

rpmbuild -bi amanda-2.3.0.spec

* Package: amanda
* Package: amanda-client
* Package: amanda-server
…
echo Executing: %build
Executing: %build
+ cd /usr/src/redhat/BUILD

Real-World Package Building

272

2 Of course, if the process of installing the software changed some necessary config files, they would have to be redone, but in this case it
didn't happen.

+ cd amanda-2.3.0
+ make
Making all in common-src
make[1]: Entering directory `/usr/src/redhat/BUILD/amanda-2.3.0/common-src'
../tools/munge Makefile.in Makefile.out
make[2]: Entering directory `/usr/src/redhat/BUILD/amanda-2.3.0/common-src'
cc -g -I. -I../config -c error.c -o error.o
cc -g -I. -I../config -c alloc.c -o alloc.o
…
+ umask 022
+ echo Executing: %install
Executing: %install
+ cd /usr/src/redhat/BUILD
+ cd amanda-2.3.0
+ make install
Making install in common-src
make[1]: Entering directory `/usr/src/redhat/BUILD/amanda-2.3.0/common-src'
…
install -c -o bin amrestore.8 /usr/man/man8
install -c -o bin amtape.8 /usr/man/man8

make[2]: Leaving directory `/usr/src/redhat/BUILD/amanda-2.3.0/man'
make[1]: Leaving directory `/usr/src/redhat/BUILD/amanda-2.3.0/man'
+ exit 0
+ umask 022
+ echo Executing: special doc
Executing: special doc
+ cd /usr/src/redhat/BUILD
+ cd amanda-2.3.0
+ DOCDIR=//usr/doc/amanda-2.3.0-1
+ DOCDIR=//usr/doc/amanda-client-2.3.0-1
+ DOCDIR=//usr/doc/amanda-server-2.3.0-1
+ exit 0

#

Everything looks pretty good. At this point, the amanda software, built by RPM, has been installed
on the build system. Since performed all the configuration steps before, when we were manually
building amanda, everything should still be configured properly to test this new build. 2 So why
don't we give the new binaries a try?

Testing RPM's Handiwork
After a quick double-check to ensure that all the configuration steps were still in place from our
manual build, we reran our tests. No problems were found. It's time to build some packages!

Package Building
OK, let's go for broke and tell RPM to do the works, including the creation of the binary and source
packages:

rpmbuild -ba amanda-2.3.0.spec

* Package: amanda
* Package: amanda-client
* Package: amanda-server
…
echo Executing: %build
Executing: %build

Real-World Package Building

273

+ cd /usr/src/redhat/BUILD
+ cd amanda-2.3.0
+ make
Making all in common-src
…
+ echo Executing: %install
Executing: %install
+ cd /usr/src/redhat/BUILD
+ cd amanda-2.3.0
+ make install
Making install in common-src
…
+ echo Executing: special doc
Executing: special doc
…
Binary Packaging: amanda-client-2.3.0-1
Finding dependencies...
Requires (1): dump
1 block
Generating signature: 0
Wrote: /usr/src/redhat/RPMS/i386/amanda-client-2.3.0-1.i386.rpm
Binary Packaging: amanda-server-2.3.0-1
Finding dependencies...
1 block
Generating signature: 0
Wrote: /usr/src/redhat/RPMS/i386/amanda-server-2.3.0-1.i386.rpm
+ umask 022
+ echo Executing: %clean
Executing: %clean
+ cd /usr/src/redhat/BUILD
+ cd amanda-2.3.0
+ exit 0
Source Packaging: amanda-2.3.0-1
amanda-2.3.0.spec
amanda-2.3.0-linux.patch
amanda-2.3.0.tar.gz
374 blocks
Generating signature: 0
Wrote: /usr/src/redhat/SRPMS/amanda-2.3.0-1.src.rpm

#

Great! Let's take a look at our handiwork:

cd /usr/src/redhat/RPMS/i386/
ls -l

total 2
-rw-r--r-- 1 root root 1246 Nov 20 21:19 amanda-client-2.3.0-1.i386.rpm
-rw-r--r-- 1 root root 1308 Nov 20 21:19 amanda-server-2.3.0-1.i386.rpm

#

Hmmm, those binary packages look sort of small. We'd better see what's in there:

rpm -qilp amanda-*-1.i386.rpm

Name : amanda-client Distribution: (none)
Version : 2.3.0 Vendor: (none)
Release : 1 Build Date: Wed Nov 20 21:19:44 1996
Install date: (none) Build Host: moocow.rpm.org
Group : System/Backup Source RPM: amanda-2.3.0-1.src.rpm
Size : 0
Summary : Client-side Amanda package

Real-World Package Building

274

Description :
The Amanda Network Backup system contains software necessary to
automatically perform backups across a network. Amanda consists of
two packages -- a client (this package), and a server:

The client package enable a network-capable system to have its
filesystems backed up by a system running the Amanda server.

NOTE: In order for a system to perform backups of itself, install both
the client and server packages!
(contains no files)

Name : amanda-server Distribution: (none)
Version : 2.3.0 Vendor: (none)
Release : 1 Build Date: Wed Nov 20 21:19:44 1996
Install date: (none) Build Host: moocow.rpm.org
Group : System/Backup Source RPM: amanda-2.3.0-1.src.rpm
Size : 0
Summary : Server-side Amanda package
Description :
The Amanda Network Backup system contains software necessary to
automatically perform backups across a network. Amanda consists of
two package -- a client, and a server (this package):

The server package enables a network-capable system to control one
or more Amanda client systems performing backups. The server system
will direct all backups to a locally attached tape drive. Therefore,
the server system requires a tape drive.

NOTE: In order for a system to perform backups of itself, install both
the client and server packages!
(contains no files)

#

What do they mean, (contains no files)? The spec file has perfectly good %files lists…

Oops.

Creating the %files list
Everything was going so smoothly, we forgot that the %files lists were going to need files. No prob-
lem, we just need to put the filenames in there, and we'll be all set. But is it really that easy?

How to find the installed files?

Luckily, it's not too bad. Since we saved the output from our first make install, we can see the file-
names as they're installed. Of course, it's important to make sure the install output is valid. Fortu-
nately for us, amanda didn't require much fiddling by the time we got it built and tested. If it had, we
would have had to get more recent output from the installation phase.

It's time for more decisions. We have one list of installed files, and two %files lists. It would be
silly to put all the files in both %files lists, so we have to decide which file goes where.

This is where experience with the software really pays off, because the wrong decision made here
can result in awkward, ill-featured packages. Here's the %files list we came up with for the client
subpackage:

%files client
/usr/lib/amanda/amandad
/usr/lib/amanda/sendsize
/usr/lib/amanda/calcsize
/usr/lib/amanda/sendbackup-dump

Real-World Package Building

275

/usr/lib/amanda/selfcheck
/usr/lib/amanda/sendbackup-gnutar
/usr/lib/amanda/runtar
README
COPYRIGHT
docs/INSTALL
docs/SYSTEM.NOTES
docs/WHATS.NEW

The files in /usr/lib/amanda are all the client-side amanda programs, so that part was easy.
The remaining files are part of the original source archive. Amanda doesn't install them, but they
contain information that users should see.

Realizing that RPM can't package these files specified as they are, let's leave the client %files list
for a moment, and check out the list for the server subpackage:

%files server
/usr/sbin/amadmin
/usr/sbin/amcheck
/usr/sbin/amcleanup
/usr/sbin/amdump
/usr/sbin/amflush
/usr/sbin/amlabel
/usr/sbin/amrestore
/usr/sbin/amtape
/usr/lib/amanda/taper
/usr/lib/amanda/dumper
/usr/lib/amanda/driver
/usr/lib/amanda/planner
/usr/lib/amanda/reporter
/usr/lib/amanda/getconf
/usr/lib/amanda/chg-generic
/usr/man/man8/amanda.8
/usr/man/man8/amadmin.8
/usr/man/man8/amcheck.8
/usr/man/man8/amcleanup.8
/usr/man/man8/amdump.8
/usr/man/man8/amflush.8
/usr/man/man8/amlabel.8
/usr/man/man8/amrestore.8
/usr/man/man8/amtape.8
README
COPYRIGHT
docs/INSTALL
docs/KERBEROS
docs/SUNOS4.BUG
docs/SYSTEM.NOTES
docs/TAPE.CHANGERS
docs/WHATS.NEW
docs/MULTITAPE
example

The files in /usr/sbin are programs that will be run by the amanda administrator in order to per-
form backups and restores. The files in /usr/lib/amanda are the server-side programs that do
the actual work during backups. Following that are a number of man pages: one for each program to
be run by the amanda administrator, and one with an overview of amanda.

Bringing up the rear are a number of files that are not installed, but would be handy for the amanda
administrator to have available. There is some overlap with the files that will be part of the client
subpackage, but the additional files here discuss features that would interest only amanda adminis-
trators. Included here is the example subdirectory, which contains a few example configuration

Real-World Package Building

276

files for the amanda server.

As in the client %files list, these last files can't be packaged by RPM as we've listed them. We need
to use a few more of RPM's tricks to get them packaged.

Applying Directives

Since we'd like the client subpackage to include those files that are not normally installed, and since
the files are documentation, let's use the %doc directive on them. That will accomplish two things:

1. When the client subpackage is installed, it will direct RPM to place them in a package-specific
directory in /usr/doc

2. It will tag the files as being documentation, making it possible for users to easily track down
the documentation with a simple rpm -qd command

In the course of looking over the %files lists, it becomes apparent that the directory /
usr/lib/amanda will contain only files from the two amanda subpackages. If the subpackages
are erased, the directory will remain, which won't hurt anything, but it isn't as neat as it could be.
But if we add the directory to the list, RPM will automatically package every file in the directory.
Since the files in that directory are part of both the client and the server subpackages, we'll need to
use the %dir directive to instruct RPM to package only the directory.

After these changes, here's what the client %files list looks like now:

%files client
%dir /usr/lib/amanda/
/usr/lib/amanda/amandad
/usr/lib/amanda/sendsize
/usr/lib/amanda/calcsize
/usr/lib/amanda/sendbackup-dump
/usr/lib/amanda/selfcheck
/usr/lib/amanda/sendbackup-gnutar
/usr/lib/amanda/runtar
%doc README
%doc COPYRIGHT
%doc docs/INSTALL
%doc docs/SYSTEM.NOTES
%doc docs/WHATS.NEW

We've also applied the same directives to the server %files list:

%files server
/usr/sbin/amadmin
/usr/sbin/amcheck
/usr/sbin/amcleanup
/usr/sbin/amdump
/usr/sbin/amflush
/usr/sbin/amlabel
/usr/sbin/amrestore
/usr/sbin/amtape
%dir /usr/lib/amanda/
/usr/lib/amanda/taper
/usr/lib/amanda/dumper
/usr/lib/amanda/driver
/usr/lib/amanda/planner
/usr/lib/amanda/reporter
/usr/lib/amanda/getconf

Real-World Package Building

277

/usr/lib/amanda/chg-generic
/usr/man/man8/amanda.8
/usr/man/man8/amadmin.8
/usr/man/man8/amcheck.8
/usr/man/man8/amcleanup.8
/usr/man/man8/amdump.8
/usr/man/man8/amflush.8
/usr/man/man8/amlabel.8
/usr/man/man8/amrestore.8
/usr/man/man8/amtape.8
%doc README
%doc COPYRIGHT
%doc docs/INSTALL
%doc docs/KERBEROS
%doc docs/SUNOS4.BUG
%doc docs/SYSTEM.NOTES
%doc docs/TAPE.CHANGERS
%doc docs/WHATS.NEW
%doc docs/MULTITAPE
%doc example

You'll note that we neglected to use the %doc directive on the man page files. The reason is that
RPM automatically tags any file destined for /usr/man as documentation. Now our spec file has a
complete set of tags, the two subpackages are defined, it has build-time scripts that work, and now,
%files lists for each subpackage. Why don't we try that build again?

rpmbuild -ba amanda-2.3.0.spec

* Package: amanda
* Package: amanda-client
* Package: amanda-server
…
echo Executing: %build
Executing: %build
+ cd /usr/src/redhat/BUILD
+ cd amanda-2.3.0
+ make
Making all in common-src
…
+ echo Executing: %install
Executing: %install
+ cd /usr/src/redhat/BUILD
+ cd amanda-2.3.0
+ make install
Making install in common-src
…
+ echo Executing: special doc
Executing: special doc
…
Binary Packaging: amanda-client-2.3.0-6
Finding dependencies...
Requires (3): libc.so.5 libdb.so.2 dump
usr/doc/amanda-client-2.3.0-6
usr/doc/amanda-client-2.3.0-6/COPYRIGHT
usr/doc/amanda-client-2.3.0-6/INSTALL
…
usr/lib/amanda/sendbackup-gnutar
usr/lib/amanda/sendsize
1453 blocks
Generating signature: 0
Wrote: /usr/src/redhat/RPMS/i386/amanda-client-2.3.0-6.i386.rpm
Binary Packaging: amanda-server-2.3.0-6
Finding dependencies...
Requires (2): libc.so.5 libdb.so.2
usr/doc/amanda-server-2.3.0-6
usr/doc/amanda-server-2.3.0-6/COPYRIGHT

Real-World Package Building

278

usr/doc/amanda-server-2.3.0-6/INSTALL
…
usr/sbin/amrestore
usr/sbin/amtape
3404 blocks
Generating signature: 0
Wrote: /usr/src/redhat/RPMS/i386/amanda-server-2.3.0-6.i386.rpm
…
Source Packaging: amanda-2.3.0-6
amanda-2.3.0.spec
amanda-2.3.0-linux.patch
amanda-rpm-instructions.tar.gz
amanda-2.3.0.tar.gz
393 blocks
Generating signature: 0
Wrote: /usr/src/redhat/SRPMS/amanda-2.3.0-6.src.rpm

#

If we take a quick look at the client and server subpackages, we find that, sure enough, this time
they contain files:

cd /usr/src/redhat/RPMS/i386/
ls -l amanda-*

-rw-r--r-- 1 root root 211409 Nov 21 15:56 amanda-client-2.3.0-1.i386.rpm
-rw-r--r-- 1 root root 512814 Nov 21 15:57 amanda-server-2.3.0-1.i386.rpm

rpm -qilp amanda-*

Name : amanda-client Distribution: (none)
Version : 2.3.0 Vendor: (none)
Release : 1 Build Date: Thu Nov 21 15:55:59 1996
Install date: (none) Build Host: moocow.rpm.org
Group : System/Backup Source RPM: amanda-2.3.0-1.src.rpm
Size : 737101
Summary : Client-side Amanda package
Description :
The Amanda Network Backup system contains software necessary to
automatically perform backups across a network. Amanda consists of
two packages -- a client (this package), and a server:

The client package enable a network-capable system to have its
filesystems backed up by a system running the Amanda server.

NOTE: In order for a system to perform backups of itself, install both
the client and server packages!

/usr/doc/amanda-client-2.3.0-1
/usr/doc/amanda-client-2.3.0-1/COPYRIGHT
/usr/doc/amanda-client-2.3.0-1/INSTALL
…
/usr/lib/amanda/sendbackup-gnutar
/usr/lib/amanda/sendsize

Name : amanda-server Distribution: (none)
Version : 2.3.0 Vendor: (none)
Release : 1 Build Date: Thu Nov 21 15:55:59 1996
Install date: (none) Build Host: moocow.rpm.org
Group : System/Backup Source RPM: amanda-2.3.0-1.src.rpm
Size : 1733825
Summary : Server-side Amanda package
Description :
The Amanda Network Backup system contains software necessary to
automatically perform backups across a network. Amanda consists of
two package -- a client, and a server (this package):

Real-World Package Building

279

The server package enables a network-capable system to control one
or more Amanda client systems performing backups. The server system
will direct all backups to a locally attached tape drive. Therefore,
the server system requires a tape drive.

NOTE: In order for a system to perform backups of itself, install both
the client and server packages!

/usr/doc/amanda-server-2.3.0-1
/usr/doc/amanda-server-2.3.0-1/COPYRIGHT
/usr/doc/amanda-server-2.3.0-1/INSTALL
…
/usr/sbin/amrestore
/usr/sbin/amtape

#

We're finally ready to test these packages!

Testing those first packages
The system we've built the packages on already has amanda installed. This is due to the build pro-
cess itself. However, we can install the new packages on top of the already-existing files:

cd /usr/src/redhat/RPMS/i386
rpm -ivh amanda-*-1.i386.rpm

amanda-client ##
amanda-server ##

#

Running some tests, it looks like everything is running well. But back in the section called “Testing
Newly Built Packages”, we mentioned that it was possible to install a newly-built package on the
build system, and not realize that the package was missing files. Well, there's another reason why in-
stalling the package on the build-system for testing is a bad idea. Let's bring our packages to a dif-
ferent system, test them there, and see what happens.

Installing the Package On A Different System

Looks like we're almost through. Let's install the packages on another system that had not previ-
ously run amanda, and test it there:

rpm -ivh amanda-*-1.i386.rpm

amanda-client ##
amanda-server ##

#

The install went smoothly enough. However, testing did not. Why? Nothing was set up! The server
configuration files, the inetd.conf entry for the client, everything was missing. If we stop and
think about it for a moment that makes sense: we had gone through all those steps on the build sys-
tem, but none of those steps can be packaged as files.

After following the steps in the installation instructions, everything works. While we could expect
users to do most of the grunt work associated with getting amanda configured, RPM does have the
ability to run scripts when packages are installed and erased. Why don't we use that feature to make

Real-World Package Building

280

life easier for our users?

Finishing Touches
At this point in the build process, we're on the home stretch. The software builds correctly and is
packaged. It's time to stop looking at things from a "build the software" perspective, and time to
starting looking at things from a "package the software" point of view.

The difference lies in looking at the packages from the user's perspective. Does the package install
easily, or does it require a lot of effort to make it operative? When the package is removed, does it
clean up after itself, or does it leave bits and pieces strewn throughout the filesystem?

Let's put a bit more effort into this spec file, and make life easier on our users.

Creating Install Scripts

When it comes to needing post-installation configuration, amanda certainly is no slouch! We'll work
on the client first. Let's look at a section of the script we wrote, comment on it, and move on:

%post client

See if they've installed amanda before...
If they have, none of this should be necessary...

if ["$1" = 1];
then

First, we start the script with a %post statement, and indicate that this script is for the client sub-
package. As the comments indicate, we only want to perform the following tasks if this is the first
time the client subpackage has been installed. To do this, we use the first and only argument passed
to the script. It is a number indicating how many instances of this package will be installed after the
current installation is complete.

If the argument is equal to 1, that means that no other instances of the client subpackage are
presently installed, and that this one is the first. Let's continue:

Set disk devices so that bin can read them
(This is actually done on Red Hat Linux; only need to add bin to
group disk)

if grep "^disk::.*bin" /etc/group > /dev/null
then

true
else

If there are any members in group disk, add bin after a comma...
sed -e 's/\(^disk::[0-9]\{1,\}:.\{1,\}\)/\1,bin/' /etc/group > /etc/group.tmp

If there are no members in group disk, add bin...
sed -e 's/\(^disk::[0-9]\{1,\}:$\)/\1bin/' /etc/group.tmp > /etc/group

clean up!
rm -f /etc/group.tmp
fi

One of amanda's requirements is that the user ID running the dumps on the client needs to be able to

Real-World Package Building

281

read from every disk's device file. The folks at Red Hat have done half the work for us by creating a
group disk and giving that group read/write access to every disk device. Since our dumpuser is
bin, we only need to add bin to the disk group. Two lines of sed, and we're done!

The next section is related to the last. It also focuses on making sure bin can access everything it
needs while doing backups:

Also set /etc/dumpdates to be writable by group disk

chgrp disk /etc/dumpdates
chmod g+w /etc/dumpdates

Since amanda uses dump to obtain the backups, and since dump keeps track of the backups in /
etc/dumpdates, it's only natural that bin will need read/write access to the file. In a perfect
world, /etc/dumpdates would have already been set to allow group disk to read and write, but
we had to do it ourselves. It's not a big problem, though.

Next, we need to create the appropriate network-related entries, so that amanda clients can commu-
nicate with amanda servers, and vice versa:

Add amanda line to /etc/services

if grep "^amanda" /etc/services >/dev/null
then

true
else

echo "amanda 10080/udp # Added by package amanda-client" >>
/etc/services
fi

By using grep to look for lines that begin with the letters amanda, we can easily see if /
etc/services is already configured properly. It it isn't, we simply append a line to the end.

We also added a comment so that sysadmins will know where the entry came from, and either take
our word for it or issue an rpm -q --scripts amanda-client command and see for themselves. We
did it all on one line because it makes the script simpler.

Let's look at the rest of the network-related part of this script:

Add amanda line to /etc/inetd.conf

if grep "^amanda" /etc/inetd.conf >/dev/null
then

true
else

echo "amanda dgram udp wait bin /usr/lib/amanda/amandad amandad
added by package amanda-client" >>/etc/inetd.conf

Kick inetd

if [-f /var/run/inetd.pid];
then

kill -HUP `cat /var/run/inetd.pid`
fi
fi

Real-World Package Building

282

fi

Here, we've used the same approach to add an entry to /etc/inetd.conf. We then HUP inetd
so the change will take affect, and we're done!

Oh, and that last fi at the end? That's to close the if ["$1" = 1] at the start of the script. Now let's
look at the server's post-install script:

%post server

See if they've installed amanda before...

if ["$1" = 1];
then

Add amanda line to /etc/services

if grep "^amanda" /etc/services >/dev/null
then

true
else

echo "amanda 10080/udp # Added by package amanda-server"
>>/etc/services
fi

fi

That was short! And this huge difference brings up a good point about writing install scripts: It's im-
portant to understand what you as the package builder should do for the user, and what they should
do for themselves.

In the case of the client package, every one of the steps performed by the post-install script was
something that a fairly knowledgeable user could have done. But each of these steps have one thing
in common. No matter how the user configures amanda, these steps will never change. And given
the nature of client/server applications, there's a good chance that many more amanda client pack-
ages will be installed than amanda servers. Would you like to be tasked with installing this package
on twenty systems, and performing each of the steps we've automated, twenty times? We thought
not.

There is one step that we did not automate for the client package. The step we left out is the creation
of a .rhosts file. Since this file must contain the name of the amanda server, we have no way of
knowing what the file should look like. Therefore, that's one step we can't automate.

The server's post-install script is so short because there's little else that can be automated. The other
steps required to set up an amanda server include:

1. Choosing a configuration name, which requires user input

2. Creating a directory to hold the server configuration files, named according to the configuration
name, which depends on the first step

3. Modifying example configuration files to suit the site, which requires user input

4. Adding crontab entries to run amanda nightly, which requires user input

Since every step depends on the user making decisions, the best way to handle them is to not handle
them at all. Let the user do it!

Real-World Package Building

283

Creating Uninstall Scripts

Where there are install scripts, there are uninstall scripts. While there is no ironclad rule to that ef-
fect, it is a good practice. Following this practice, we have an uninstall script for the client package,
and one for the server. Let's take the client first:

%postun client

First, see if we're the last amanda-client package on the system...
If not, then we don't need to do this stuff...

if ["$1" = 0];
then

As before, we start out with a declaration of the type of script this is, and which subpackage it is for.
Following that we have an if statement similar to the one we used in the install scripts, save one dif-
ference. Here, we're comparing the argument against zero. The reason is that we are trying to see if
there will be zero instances of this package after the uninstall is complete. If this is the case, the re-
mainder of the script needs to be run, since there are no other amanda client packages left.

Next, we remove bin from the disk group:

First, get rid of bin from the disk group...

if grep "^disk::.*bin" /etc/group > /dev/null
then

Nuke bin at the end of the line...
sed -e 's/\(^disk::[0-9]\{1,\}:.\{1,\}\),bin$/\1/' /etc/group > /etc/group.tmp

Nuke bin on the line by itself...
sed -e 's/\(^disk::[0-9]\{1,\}:\)bin$/\1/' /etc/group.tmp > /etc/group1.tmp

Nuke bin in the middle of the line...
sed -e 's/\(^disk::[0-9]\{1,\}:.\{1,\}\),bin,\(.\{1,\}\)/\1,\2/' /etc/group1.tmp > /etc/group2.tmp

Nuke bin at the start of the line...
sed -e 's/\(^disk::[0-9]\{1,\}:\)bin,\(.\{1,\}\)/\1\2/' /etc/group2.tmp > /etc/group

Clean up after ourselves...
rm -f /etc/group.tmp /etc/group1.tmp /etc/group2.tmp

fi

No surprises there. Continuing our uninstall, we start on the network-related tasks:

Next, lose the amanda line in /etc/services...
We only want to do this if the server package isn't installed
Look for /usr/sbin/amdump, and leave it if there...

if [! -f /usr/sbin/amdump];
then

if grep "^amanda" /etc/services > /dev/null
then

grep -v "^amanda" /etc/services > /etc/services.tmp

Real-World Package Building

284

mv -f /etc/services.tmp /etc/services
fi

fi

That's odd. Why are we looking for a file from the server package? If you look back at the install
scripts for the client and server packages, you'll find that the one thing they have in common is that
both the client and the server require the same entry in /etc/services.

If an amanda server is going to back itself up, it also needs the amanda client software. Therefore,
both subpackages need to add an entry to /etc/services. But what if one of the packages is re-
moved? Perhaps the server is being demoted to a client, or maybe the server is no longer going to be
backed up using amanda. In these cases, the entry in /etc/services must stay. So, in the case
of the client, we look for a file from the server subpackage, and if it's there, we leave the entry
alone.

Granted, this is a somewhat unsightly way to see if a certain package is installed. Some of you are
probably even saying, "Why can't RPM be used? Just do an rpm -q amanda-server, and decide
what to do based on that." And that would be the best way to do it, except for one small point:

Only one invocation of RPM can run at any given time.

Since RPM is running to perform the uninstall, if the uninstall-script were to attempt to run RPM
again, it would fail. The reason it would fail is because only one copy of RPM can access the data-
base at a time. So we are stuck with our unsightly friend.

Continuing the network-related uninstall tasks:

Finally, the amanda entry in /etc/inetd.conf

if grep "^amanda" /etc/inetd.conf > /dev/null
then

grep -v "^amanda" /etc/inetd.conf > /etc/inetd.conf.tmp
mv -f /etc/inetd.conf.tmp /etc/inetd.conf

Kick inetd

if [-f /var/run/inetd.pid];
then

kill -HUP `cat /var/run/inetd.pid`
fi
fi

fi

Here, we're using grep's ability to return lines that don't match the search string, in order to remove
every trace of amanda from /etc/inetd.conf. After issuing a HUP on inetd, we're done.

On to the server. If you've been noticing a pattern between the various scripts, you won't be disap-
pointed here:

%postun server

See if we're the last server package on the system...
If not, we don't need to do any of this stuff...

if ["$1" = 0];
then

Real-World Package Building

285

Lose the amanda line in /etc/services...
We only want to do this if the client package isn't installed
Look for /usr/lib/amandad, and leave it if there...

if [! -f /usr/lib/amanda/amandad];
then

if grep "^amanda" /etc/services > /dev/null
then

grep -v "^amanda" /etc/services > /etc/services.tmp
mv -f /etc/services.tmp /etc/services

fi
fi

fi

By now the opening if statement is an old friend. As you might have expected, we are verifying
whether the client package is installed, by looking for a file from that package. If the client package
isn't there, the entry is removed from /etc/services. And that, is that.

Obviously, these scripts must be carefully tested. In the case of amanda, since the two subpackages
have some measure of interdependency, it's necessary to try different sequences of installing and
erasing the two packages to make sure the /etc/services logic works properly in all cases.

After a bit of testing, our install and uninstall scripts pass with flying colors. From a technological
standpoint, the client and server subpackages are ready to go.

Bits and Pieces

However, just because a package has been properly built, and installs and can be erased without
problems, doesn't mean that the package builder's job is done. It's necessary to look at each newly-
built package from the user's perspective. Does the package contain everything the user needs in or-
der to deploy it effectively? Or will the user need to fiddle with it, guessing as they go?

In the case of our amanda packages, it was obvious that some additional documentation was re-
quired so that the user would know what needed to be done in order to finalize the installation.
Simply directing the user to the standard amanda documentation wasn't the right solution, either.
Many of the steps outlined in the INSTALL document had already been done by the post-install
scripts. No, an interim document was required. Two, actually: one for the client, and one for the
server.

So two files were created, one to be added to each subpackage. The question was, how to do it? Es-
sentially, there were two options:

1. Put the files in the amanda directory tree that had been used to perform the initial builds and
generate a new patch file

2. Create a tar file containing the two files, and modify the spec file to unpack the documentation
into the amanda directory tree.

3. Drop the files directly into the amanda directory tree without using tar.

Since the second approach was more interesting, that's the approach we chose. It required an addi-
tional source tag in the spec file:

Source1: amanda-rpm-instructions.tar.gz

Real-World Package Building

286

Also required was an additional %setup macro in the %prep script:

%setup -T -D -a 1

While the %setup macro might look intimidating, it wasn't that hard to construct. Here's what each
options means:

• -T — Do not perform the default archive unpacking.

• -D — Do not delete the directory before unpacking.

• -a1 — Unpack the archive specified by the source1 tag after changing directory.

Finally, two additions to the %files lists were required. One for the client:

%doc amanda-client.README

And one for the server:

%doc amanda-server.README

At this point, the packages were complete. Certainly there is software out there that doesn't require
this level of effort to package. Just as certainly there is software that is much more of a challenge.
Hopefully this chapter has given you some idea about how to approach package building for more
complex applications.

Real-World Package Building

287

Chapter 21. A Guide to the RPM
Library API

In this chapter, we'll explore the functions used internally by RPM. These functions are available for
anyone to use, making it possible to add RPM functionality to new and existing programs. Rather
than continually refer to "the RPM library" throughout this chapter, we'll use the name of the lib-
rary's main include file — rpmlib.

An Overview of rpmlib
There are a number of files that make up rpmlib. First and foremost, of course, is the rpmlib library,
librpm.a. This library contains all the functions required to implement all the basic functions
contained in RPM.

The remaining files define the various data structures, parameters, and symbols used by rpmlib:

• rpmlib.h

• dbindex.h

• header.h

In general, rpmlib.h will always be required. When using rpmlib's header-related functions,
header.h will be required, while the database-related function will require dbindex.h. As each
function is described in this chapter, we'll provide the function's prototype as well as the #include
statements the function requires.

rpmlib Functions
There are more than sixty different functions in rpmlib. The tasks they perform range from low-level
database record traversal, to high-level package manipulation. We've grouped the functions into dif-
ferent categories for easy reference.

Error Handling
The functions in this section perform rpmlib's basic error handling. All error handling centers on the
use of specific status codes. The status codes are defined in rpmlib.h and are of the form RP-
MERR_xxx, where xxx is the name of the error.

Return Error Code — rpmErrorCode()

#include <rpm/rpmlib.h>

int rpmErrorCode(void);

This function returns the error code set by the last rpmlib function that failed. Should only be used
in an error callback function defined by rpmErrorSetCallBack().

Return Error String — rpmErrorString()

288

#include <rpm/rpmlib.h>

char *rpmErrorString(void);

This function returns the error string set by the last rpmlib function that failed. Should only be used
in an error callback function defined by rpmErrorSetCallBack().

Set Error CallBack Function — rpmErrorSetCallback()

#include <rpm/rpmlib.h>

rpmErrorCallBackType rpmErrorSetCallback(rpmErrorCallBackType);

This function sets the current error callback function to the error callback function passed to it. The
previous error callback function is returned.

Getting Package Information
The following functions are used to obtain information about a package file.

It should be noted that most information is returned in the form of a Header structure. This data
structure is widely used throughout rpmlib. We will discuss more header-related functions in the
section called “Header Manipulation” and the section called “Header Entry Manipulation”.

Read Package Information — rpmReadPackageInfo()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

int rpmReadPackageInfo(int fd,
Header * signatures,
Header * hdr);

Given an open package on fd, read in the header and signature. This function operates as expected
with both socket and pipe file descriptors passed as fd. Safe on nonseekable fds. When the func-
tion returns, fd is left positioned at the start of the package's archive section.

If either signatures or hdr are NULL, information for the NULL parameter will not be passed
back to the caller. Otherwise, they will return the package's signatures and header, respectively.

This function returns the following status values:

• 0 — Success.

• 1 — Bad magic numbers found in package.

• 2 — Other error.

A Guide to the RPM Library API

289

Read Package Header — rpmReadPackageHeader()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

int rpmReadPackageHeader(int fd,
Header * hdr,
int * isSource,
int * major,
int * minor);

Given an open package on fd, read in the header. This function operates as expected with both
socket and pipe file descriptors passed as fd. Safe on nonseekable fds. When the function returns,
fd is left positioned at the start of the package's archive section.

If hdr, isSource, major, or minor are NULL, information for the NULL parameter(s) will not
be passed back to the caller. Otherwise, they will return the package's header (hdr), information on
whether the package is a source package file or not (isSource), and the package format's major
and minor revision number (major and minor, respectively).

This function returns the following status values:

• 0 — Success.

• 1 — Bad magic numbers found in package.

• 2 — Other error.

Variable Manipulation
The following functions are used to get, set, and interpret RPM's internal variables. Variables are set
according to various pieces of system information, as well as from rpmrc files. They control vari-
ous aspects of RPM's operation.

The variables have symbolic names in the form RPMVAR_xxx, where xxx is the name of the vari-
able. All variable names are defined in rpmlib.h.

Return Value of RPM Variable — rpmGetVar()

#include <rpm/rpmlib.h>

char *rpmGetVar(int var);

This function returns the value of the variable specified in var.

On error, the function returns NULL.

Return Boolean Value Of RPM Variable — rpmGetBooleanVar()

#include <rpm/rpmlib.h>

A Guide to the RPM Library API

290

int rpmGetBooleanVar(int var);

This function looks up the variable specified in var and returns a 0 or 1 depending on the variable's
value.

On error, the function returns 0.

Set Value Of RPM Variable — rpmSetVar()

#include <rpm/rpmlib.h>

void rpmSetVar(int var,
char *val);

This function sets the variable specified in var to the value passed in val. It is also possible for
val to be NULL.

rpmrc-Related Information
The functions in this section are all related to rpmrc information — the rpmrc files as well as the
variables set from those files. This information also includes the architecture and operating system
information based on rpmrc file entries.

Read rpmrc Files — rpmReadConfigFiles()

#include <rpm/rpmlib.h>

int rpmReadConfigFiles(char * file,
char * arch,
char * os,
int building);

This function reads rpmrc files according to the following rules:

• Always read /usr/lib/rpmrc.

• If file is specified, read it.

• If file is not specified, read /etc/rpmrc and ~/.rpmrc.

Every rpmrc file entry is used with rpmSetVar() to set the appropriate RPM variable. Part of
the normal rpmrc file processing also includes setting the architecture and operating system vari-
ables for the system executing this function. These default settings can be overridden by entering ar-
chitecture and/or operating system information in arch and os, respectively. This information will
still go through the normal rpmrc translation process.

The building argument should be set to 1 only if a package is being built when this function is
called. Since most rpmlib-based applications will probably not duplicate RPM's package building
capabilities, building should normally be set to 0.

A Guide to the RPM Library API

291

Return Operating System Name — rpmGetOsName()

#include <rpm/rpmlib.h>

char *rpmGetOsName(void);

This function returns the name of the operating system, as determined by rpmlib's normal rpmrc
file processing.

Return Architecture Name — rpmGetArchName()

#include <rpm/rpmlib.h>

char *rpmGetArchName(void);

This function returns the name of the architecture, as determined by rpmlib's normal rpmrc file
processing.

Print all rpmrc-Derived Variables — rpmShowRC()

#include <rpm/rpmlib.h>

int rpmShowRC(FILE *f);

This function writes all variable names and their values to the file f. Always returns 0.

Return Architecture Compatibility Score — rpmArchScore()

#include <rpm/rpmlib.h>

int rpmArchScore(char * arch);

This function returns the "distance" between the architecture whose name is specified in arch, and
the current architecture. Returns 0 if the two architectures are incompatible. The smaller the number
returned, the more compatible the two architectures are.

Return Operating System Compatibility Score — rpmOsScore()

#include <rpm/rpmlib.h>

int rpmOsScore(char * os);

A Guide to the RPM Library API

292

This function returns the "distance" between the operating system whose name is specified in os,
and the current operating system. Returns 0 if the two operating systems are incompatible. The
smaller the number returned, the more compatible the two operating systems are.

RPM Database Manipulation
The functions in this section perform the basic operations on the RPM database. This includes open-
ing and closing the database, as well as creating the database. A function also exists to rebuild a
database that has been corrupted.

Every function that accesses the RPM database in some fashion makes use of the rpmdb structure.
This structure is used as a handle to refer to a particular RPM database.

Open RPM Database — rpmdbOpen()

#include <rpm/rpmlib.h>

int rpmdbOpen(char * root,
rpmdb * dbp,
int mode,
int perms);

This function opens the RPM database located in RPMVAR_DBPATH, returning the rpmdb struc-
ture dbp. If root is specified, it is prepended to RPMVAR_DBPATH prior to opening. The mode
and perms parameters are identical to open(2)'s flags and mode parameters, respectively.

The function returns 1 on error, 0 on success.

Close RPM Database — rpmdbClose()

#include <rpm/rpmlib.h>

void rpmdbClose(rpmdb db);

This function closes the RPM database specified by the rpmdb structure db. The db structure is also
freed.

Create RPM Database — rpmdbInit()

#include <rpm/rpmlib.h>

int rpmdbInit(char * root,
int perms);

This function creates a new RPM database to be located in RPMVAR_DBPATH. If the database
already exists, it is left unchanged. If root is specified, it is prepended to RPMVAR_DBPATH pri-
or to creation. The perms parameter is identical to open(2)'s mode parameter.

The function returns 1 on error, 0 on success.

A Guide to the RPM Library API

293

Rebuild RPM Database — rpmdbRebuild()

#include <rpm/rpmlib.h>

int rpmdbRebuild(char * root);

This function rebuilds the RPM database located in RPMVAR_DBPATH. If root is specified, it is
prepended to RPMVAR_DBPATH prior to rebuilding.

The function returns 1 on error, 0 on success.

RPM Database Traversal
The following functions are used to traverse the RPM database. Also described in this section is a
function to retrieve a database record by its record number.

It should be noted that database records are returned in the form of a Header structure. This data
structure is widely used throughout rpmlib. We will discuss more header-related functions in the
section called “Header Manipulation” and the section called “Header Entry Manipulation”.

Begin RPM Database Traversal — rpmdbFirstRecNum()

#include <rpm/rpmlib.h>

unsigned int rpmdbFirstRecNum(rpmdb db);

This function returns the record number of the first record in the database specified by db.

On error, it returns 0.

Traverse To Next RPM Database Record — rpmdbNextRecNum()

#include <rpm/rpmlib.h>

unsigned int rpmdbNextRecNum(rpmdb db,
unsigned int lastOffset);

This function returns the record number of the record following the record number passed in
lastOffset, in the database specified by db.

On error, this function returns 0.

Return Record From RPM Database — rpmdbGetRecord()

#include <rpm/rpmlib.h>

Header rpmdbGetRecord(rpmdb db,

A Guide to the RPM Library API

294

unsigned int offset);

This function returns the record at the record number specified by offset from the database spe-
cified by db.

This function returns NULL on error.

RPM Database Search
The functions in this section search the various parts of the RPM database. They all return a struc-
ture of type dbiIndexSet, which contains the records that match the search term. Here is the defini-
tion of the structure, as found in <rpm/dbindex.h>:

typedef struct {
dbiIndexRecord * recs;
int count;

} dbiIndexSet;

Each dbiIndexRecord is also defined in <rpm/dbindex.h> as follows:

typedef struct {
unsigned int recOffset;
unsigned int fileNumber;

} dbiIndexRecord;

The recOffset element is the offset of the record from the start of the database file. The fileN-
umber element is only used by rpmdbFindByFile().

Keep in mind that the rpmdbFindxxx search functions each return dbiIndexSet structures, which
must be freed with dbiFreeIndexRecord() when no longer needed.

Free Database Index — dbiFreeIndexRecord()

#include <rpm/rpmlib.h>
#include <rpm/dbindex.h>

void dbiFreeIndexRecord(dbiIndexSet set);

This function frees the database index set specified by set.

Search RPM Database By File — rpmdbFindByFile()

#include <rpm/rpmlib.h>
#include <rpm/dbindex.h>

int rpmdbFindByFile(rpmdb db,

A Guide to the RPM Library API

295

char * filespec,
dbiIndexSet * matches);

This function searches the RPM database specified by db for the package which owns the file spe-
cified by filespec. It returns matching records in matches.

This function returns the following status values:

• -1 — An error occurred reading a database record.

• 0 — The search completed normally.

• 1 — The search term was not found.

Search RPM Database By Group — rpmdbFindByGroup()

#include <rpm/rpmlib.h>
#include <rpm/dbindex.h>

int rpmdbFindByGroup(rpmdb db,
char * group,
dbiIndexSet * matches);

This function searches the RPM database specified by db for the packages which are members of
the group specified by group. It returns matching records in matches.

This function returns the following status values:

• -1 — An error occurred reading a database record.

• 0 — The search completed normally.

• 1 — The search term was not found.

Search RPM Database By Package — rpmdbFindPackage()

#include <rpm/rpmlib.h>
#include <rpm/dbindex.h>

int rpmdbFindPackage(rpmdb db,
char * name,
dbiIndexSet * matches);

This function searches the RPM database specified by db for the packages with the package name
(not label) specified by name. It returns matching records in matches.

This function returns the following status values:

• -1 — An error occurred reading a database record.

A Guide to the RPM Library API

296

• 0 — The search completed normally.

• 1 — The search term was not found.

Search RPM Database By Provides — rpmdbFindByProvides()

#include <rpm/rpmlib.h>
#include <rpm/dbindex.h>

int rpmdbFindByProvides(rpmdb db,
char * provides,
dbiIndexSet * matches);

This function searches the RPM database specified by db for the packages which provide the
provides information specified by provides. It returns matching records in matches.

This function returns the following status values:

• -1 — An error occurred reading a database record.

• 0 — The search completed normally.

• 1 — The search term was not found.

Search RPM Database By Requires — rpmdbFindByRe-
quiredBy()

#include <rpm/rpmlib.h>
#include <rpm/dbindex.h>

int rpmdbFindByRequiredBy(rpmdb db,
char * requires,
dbiIndexSet * matches);

This function searches the RPM database specified by db for the packages which require the re-
quires information specified by requires. It returns matching records in matches.

This function returns the following status values:

• -1 — An error occurred reading a database record.

• 0 — The search completed normally.

• 1 — The search term was not found.

Search RPM Database By Conflicts — rpmdbFindByCon-
flicts()

A Guide to the RPM Library API

297

#include <rpm/rpmlib.h>
#include <rpm/dbindex.h>

int rpmdbFindByConflicts(rpmdb db,
char * conflicts,
dbiIndexSet * matches);

This function searches the RPM database specified by db for the packages which conflict with the
conflicts information specified by conflicts. It returns matching records in matches.

This function returns the following status values:

• -1 — An error occurred reading a database record.

• 0 — The search completed normally.

• 1 — The search term was not found.

Package Manipulation
These functions perform the operations most RPM users are familiar with. Functions that install and
erase packages are here, along with a few related lower-level support functions.

Install Source Package File — rpmInstallSourcePackage()

#include <rpm/rpmlib.h>

int rpmInstallSourcePackage(char * root,
int fd,
char ** specFile,
rpmNotifyFunction notify,
char * labelFormat);

This function installs the source package file specified by fd. If root is not NULL, it is prepended
to the variables RPMVAR_SOURCEDIR and RPMVAR_SPECDIR prior to the actual installation.
If specFile is not NULL, the complete path and filename of the just-installed spec file is re-
turned.

The notify parameter is used to specify a progress-tracking function that will be called during the
installation. Please refer to the section called “ Track Package Installation Progress — rpmNoti-
fyFunction() ” for more information on this parameter.

The labelFormat parameter can be used to specify how the package label should be formatted. It
is used when printing the package label once the package install is ready to proceed. If label-
format is NULL, the package label is not printed.

This function returns the following status values:

• 0 — The source package was installed successfully.

• 1 — The source package file contained incorrect magic numbers.

• 2 — Another type of error occurred.

A Guide to the RPM Library API

298

Install Binary Package File — rpmInstallPackage()

#include <rpm/rpmlib.h>

int rpmInstallPackage(char * rootdir,
rpmdb db,
int fd,
char * prefix,
int flags,
rpmNotifyFunction notify,
char * labelFormat,
char * netsharedPath);

This function installs the binary package specified by fd. If a path is specified in rootdir, the
package will be installed with that path acting as the root directory. If a path is specified in
prefix, it will be used as the prefix for relocatable packages. The RPM database specified by db
is updated to reflect the newly installed package.

The flags parameter is used to control the installation behavior. The flags are defined in rpm-
lib.h and take the form RPMINSTALL_xxx, where xxx is the name of the flag.

The following flags are currently defined:

• RPMINSTALL_REPLACEPKG — Install the package even if it is already installed.

• RPMINSTALL_REPLACEFILES — Install the package even if it will replace files owned by
another package.

• RPMINSTALL_TEST — Perform all install-time checks, but do not actually install the pack-
age.

• RPMINSTALL_UPGRADE — Install the package, and remove all older versions of the pack-
age.

• RPMINSTALL_UPGRADETOOLD — Install the package, even if the package is an older ver-
sion of an already-installed package.

• RPMINSTALL_NODOCS — Do not install the package's documentation files.

• RPMINSTALL_NOSCRIPTS — Do not execute the package's install- and erase-time (in the
case of an upgrade) scripts.

• RPMINSTALL_NOARCH — Do not perform architecture compatibility tests.

• RPMINSTALL_NOOS — Do not perform operating system compatibility tests.

The notify parameter is used to specify a progress tracking function that will be called during the
installation. Please refer to the section called “ Track Package Installation Progress — rpmNoti-
fyFunction() ” for more information on this parameter.

The labelFormat parameter can be used to specify how the package label should be formatted.
This information is used when printing the package label once the package install is ready to pro-
ceed. It is used when printing the package label once the package install is ready to proceed. If la-
belformat is NULL, the package label is not printed.

The netsharedPath parameter is used to specify that part of the local filesystem that is shared
with other systems. If there is more than one path that is shared, the paths should be separated with a
colon.

A Guide to the RPM Library API

299

This function returns the following status values:

• 0 — The binary package was installed successfully.

• 1 — The binary package file contained incorrect magic numbers.

• 2 — Another type of error occurred.

Track Package Installation Progress — rpmNotifyFunction()

#include <rpm/rpmlib.h>

typedef void (*rpmNotifyFunction)(const unsigned long amount,
const unsigned long total);

A function can be passed to rpmInstallSourcePackage or rpmInstallPackage via the
notify parameter. The function will be called at regular intervals during the installation, and will
have two parameters passed to it:

1. amount — The number of bytes of the install that have been completed so far.

2. total — The total number of bytes that will be installed.

This function permits the creation of a dynamically updating progress meter during package installa-
tion.

Remove Installed Package — rpmRemovePackage()

#include <rpm/rpmlib.h>

int rpmRemovePackage(char * root,
rpmdb db,
unsigned int offset,
int flags);

This function removes the package at record number offset in the RPM database specified by db.
If root is specified, it is used as the path to a directory that will serve as the root directory while
the package is being removed.

The flags parameter is used to control the package removal behavior. The flags that may be
passed are defined in rpmlib.h, and are of the form RPMUNINSTALL_xxx, where xxx is the
name of the flag.

The following flags are currently defined:

• RPMUNINSTALL_TEST — Perform all erase-time checks, but do not actually remove the
package.

• RPMUNINSTALL_NOSCRIPTS — Do not execute the package's erase-time scripts.

A Guide to the RPM Library API

300

This function returns the following status values:

• 0 — The package was removed successfully.

• 1 — The package removal failed.

Package And File Verification
The functions in this section perform the verification operations necessary to ensure that the files
comprising a package have not been modified since they were installed.

Verification takes place on three distinct levels:

1. On the file-by-file level.

2. On a package-wide level, through the use of the %verifyscript verification script.

3. On an inter-package level, through RPM's normal dependency processing.

Because of this, there are two functions to perform each specific verification operation.

Verify File — rpmVerifyFile()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

int rpmVerifyFile(char * root,
Header h,
int filenum,
int * result);

This function verifies the filenum'th file from the package whose header is h. If root is spe-
cified, it is used as the path to a directory that will serve as the root directory while the file is being
verified. The results of the file verification are returned in result, and consist of a number of
flags. Each flag that is set indicates a verification failure.

The flags are defined in rpmlib.h, and are of the form RPMVERIFY_xxx, where xxx is the
name of the data that failed verification.

This function returns 0 on success, and 1 on failure.

Execute Package's %verifyscript Verification Script — rpmVeri-
fyScript()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

int rpmVerifyScript(char * root,
Header h,
int err);

A Guide to the RPM Library API

301

This function executes the %verifyscript verification script for the package whose header is h. err
must contain a valid file descriptor. If rpmIsVerbose() returns true, the %verifyscript verifica-
tion script will direct all status messages to err.

This function returns 0 on success, 1 on failure.

Dependency-Related Operations
The functions in this section are used to perform the various dependency-related operations suppor-
ted by rpmlib.

Dependency processing is entirely separate from normal package-based operations. The package in-
stallation and removal functions do not perform any dependency processing themselves. Therefore,
dependency processing is somewhat different from other aspects of rpmlib's operation.

Dependency processing centers around the rpmDependencies data structure. The operations that are
to be performed against the RPM database (adding, removing, and upgrading packages) are per-
formed against this data structure, using functions that are described below. These functions simply
populate the data structure according to the operation being performed. They do not perform the ac-
tual operation on the package. This is an important point to keep in mind.

Once the data structure has been completely populated, a dependency check function is called to de-
termine if there are any dependency-related problems. The result is a structure of dependency con-
flicts. This structure, rpmDependencyConflict, is defined in rpmlib.h.

Note that it is necessary to free both the conflicts structure and the rpmDependencies structure when
they are no longer needed. However, free() should not be used — special functions for this are
provided, and will be discussed in this section.

Create a New Dependency Data Structure — rpmdepDependen-
cies()

#include <rpm/rpmlib.h>

rpmDependencies rpmdepDependencies(rpmdb db);

This function returns an initialized rpmDependencies structure. The dependency checking to be
done will be based on the RPM database specified in the db parameter. If this parameter is NULL,
the dependency checking will be done as if an empty RPM database was being used.

Add a Package Install To the Dependency Data Structure — rpm-
depAddPackage()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

void rpmdepAddPackage(rpmDependencies rpmdep,
Header h);

This function adds the installation of the package whose header is h, to the rpmDependencies data
structure, rpmdep.

A Guide to the RPM Library API

302

Add a Package Upgrade To the Dependency Data Structure —
rpmdepUpgradePackage()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

void rpmdepUpgradePackage(rpmDependencies rpmdep,
Header h);

This function adds the upgrading of the package whose header is h, to the rpmDependencies data
structure, rpmdep. It is similar to rpmdepAddPackage(), but older versions of the package are
removed.

Add a Package Removal To the Dependency Data Structure —
rpmdepRemovePackage()

#include <rpm/rpmlib.h>

void rpmdepRemovePackage(rpmDependencies rpmdep,
int dboffset);

This function adds the removal of the package whose RPM database offset is dboffset, to the rp-
mDependencies data structure, rpmdep.

Add an Available Package To the Dependency Data Structure —
rpmdepAvailablePackage()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

void rpmdepAvailablePackage(rpmDependencies rpmdep,
Header h,
void * key);

This function adds the package whose header is h, to the rpmDependencies structure, rpmdep.

The key parameter can be anything that uniquely identifies the package being added. It will be re-
turned as part of the rpmDependencyConflict structure returned by rpmdepCheck(), specifically
in that structure's suggestedPackage element.

Perform a Dependency Check — rpmdepCheck()

#include <rpm/rpmlib.h>

int rpmdepCheck(rpmDependencies rpmdep,
struct rpmDependencyConflict ** conflicts,

A Guide to the RPM Library API

303

int * numConflicts);

This function performs a dependency check on the rpmDependencies structure rpmdep. It returns
an array of size numConflicts, pointed to by conflicts.

This function returns 0 on success, and 1 on error.

Free Results of rpmdepCheck() — rpmdepFreeConflicts()

#include <rpm/rpmlib.h>

void rpmdepFreeConflicts(struct rpmDependencyConflict * conflicts,
int numConflicts);

This function frees the dependency conflict information of size numConflicts pointed to by
conflicts.

Free a Dependency Data Structure — rpmdepDone()

#include <rpm/rpmlib.h>

void rpmdepDone(rpmDependencies rpmdep);

This function frees the rpmDependencies structure pointed to by rpmdep.

Diagnostic Output Control
The functions in this section are used to control the amount of diagnostic output produced by other
rpmlib functions. The rpmlib library can produce a wealth of diagnostic output, making it easy to
see what is going on at any given time.

There are several different verbosity levels defined in rpmlib.h. Their symbolic names are of the
form RPMMESS_xxx, where xxx is the name of the verbosity level. It should be noted that the nu-
meric values of the verbosity levels increase with a decrease in verbosity.

Unless otherwise set, the default verbosity level is RPMMESS_NORMAL.

Increase Verbosity Level — rpmIncreaseVerbosity()

#include <rpm/rpmlib.h>

void rpmIncreaseVerbosity(void);

This function is used to increase the current verbosity level by one.

Set Verbosity Level — rpmSetVerbosity()

A Guide to the RPM Library API

304

#include <rpm/rpmlib.h>

void rpmSetVerbosity(int level);

This function is used to set the current verbosity level to level. Note that no range checking is
done to level.

Return Verbosity Level — rpmGetVerbosity()

#include <rpm/rpmlib.h>

int rpmGetVerbosity(void);

This function returns the current verbosity level.

Check Verbosity Level — rpmIsVerbose()

#include <rpm/rpmlib.h>

int rpmIsVerbose(void);

This function checks the current verbosity level and returns 1 if the current level is set to
RPMMESS_VERBOSE or a level of higher verbosity. Otherwise, it returns 0.

Check Debug Level — rpmIsDebug()

#include <rpm/rpmlib.h>

int rpmIsDebug(void);

This function checks the current verbosity level and returns 1 if the current level is set to
RPMMESS_DEBUG, or a level of higher verbosity. Otherwise, it returns 0.

Signature Verification
The functions in this section deal with the verification of package signatures. A package file may
contain more than one type of signature. For example, a package may contain a signature that con-
tains the package's size, as well as a signature that contains cryptographically-derived data that can
be used to prove the package's origin.

Each type of signature has its own tag value. These tag values are defined in rpmlib.h and are of
the form RPMSIGTAG_xxx, where xxx is the type of signature.

Verify A Package File's Signature — rpmVerifySignature()

A Guide to the RPM Library API

305

#include <rpm/rpmlib.h>

int rpmVerifySignature(char *file,
int_32 sigTag,
void *sig,
int count,
char *result);

This function verifies the signature of the package pointed to by file. The result of the verification
is stored in result, in a format suitable for printing.

The sigTag parameter specifies the type of signature to be checked. The sig parameter specifies
the signature against which the package is to be verified. The count parameter specifies the size of
the signature; at present, this parameter is only used for PGP-based signatures.

This function returns the following values:

• RPMSIG_OK — The signature verified correctly.

• RPMSIG_UNKNOWN — The signature type is unknown.

• RPMSIG_BAD — The signature did not verify correctly.

• RPMSIG_NOKEY — The key required to check this signature is not available.

Free Signature Read By rpmReadPackageInfo() — rpm-
FreeSignature()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

void rpmFreeSignature(Header h);

This function frees the signature h.

Header Manipulation
The header is one of the key data structures in rpmlib. The functions in this section perform basic
manipulations of the header.

The header is actually a data structure. It is not necessary to fully understand the actual data struc-
ture. However, it is necessary to understand the basic concepts on which the header is based.

The header serves as a kind of miniature database. The header can be searched for specific informa-
tion, which can be retrieved easily. Like a database, the information contained in the header can be
of varying sizes.

Read A Header — headerRead()

#include <rpm/rpmlib.h>

A Guide to the RPM Library API

306

#include <rpm/header.h>

Header headerRead(int fd,
int magicp);

This function reads a header from file fd, converting it from network byte order to the host system's
byte order. If magicp is defined to be HEADER_MAGIC_YES, headerRead() will expect
header magic numbers, and will return an error if they are not present. Likewise, if magicp is
defined to be HEADER_MAGIC_NO, headerRead() will not check the header's magic num-
bers, and will return an error if they are present.

On error, this function returns NULL.

Write A Header — headerWrite()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

void headerWrite(int fd,
Header h,
int magicp);

This function writes the header h, to file fd, converting it from host byte order to network byte or-
der. If magicp is defined to be HEADER_MAGIC_YES, headerWrite() will add the appro-
priate magic numbers to the header being written. If magicp is defined to be HEAD-
ER_MAGIC_NO, headerWrite() will not include magic numbers.

Copy A Header — headerCopy()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

Header headerCopy(Header h);

This function returns a copy of header h.

Calculate A Header's Size — headerSizeof()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

unsigned int headerSizeof(Header h,
int magicp);

This function returns the number of bytes the header h takes up on disk. Note that in versions of
RPM prior to 2.3.3, this function also changes the location of the data in the header. The result is
that pointers from headerGetEntry() will no longer be valid. Therefore, any pointers acquired
before calling headerSizeof() should be discarded.

A Guide to the RPM Library API

307

Create A New Header — headerNew()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

Header headerNew(void);

This function returns a new header.

Deallocate A Header — headerFree()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

void headerFree(Header h);

This function deallocates the header specified by h.

Print Header Structure In Human-Readable Form — header-
Dump()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

void headerDump(Header h,
FILE *f,
int flags);

This function prints the structure of the header h, to the file f. If the flags parameter is defined to
be HEADER_DUMP_INLINE, the header's data is also printed.

Header Entry Manipulation
The functions in this section provide the basic operations necessary to manipulate header entries.
The following header entry types are currently defined:

• RPM_NULL_TYPE — This type is not used.

• RPM_CHAR_TYPE — The entry contains a single character.

• RPM_INT8_TYPE — The entry contains an eight-bit integer.

• RPM_INT16_TYPE — The entry contains a sixteen-bit integer.

• RPM_INT32_TYPE — The entry contains a thirty-two-bit integer.

• RPM_INT64_TYPE — The entry contains a sixty-four-bit integer.

A Guide to the RPM Library API

308

• RPM_STRING_TYPE — The entry contains a null-terminated character string.

• RPM_BIN_TYPE — The entry contains binary data that will not be interpreted by rpmlib.

• RPM_STRING_ARRAY_TYPE — The entry contains an array of null-terminated strings.

Get Entry From Header — headerGetEntry()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

int headerGetEntry(Header h,
int_32 tag,
int_32 *type,
void **p,
int_32 *c);

This function retrieves the entry matching tag from header h. The type of the entry is returned in
type, a pointer to the data is returned in p, and the size of the data is returned in c. Both type and
c may be null, in which case that data will not be returned. Note that if the entry type is
RPM_STRING_ARRAY_TYPE, you must issue a free() on p when done with the data.

This function returns 1 on success, and 0 on failure.

Add Entry To Header — headerAddEntry()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

int headerAddEntry(Header h,
int_32 tag,
int_32 type,
void *p,
int_32 c);

This function adds a new entry to the header h. The entry's tag is specified by the tag parameter,
and the entry's type is specified by the type parameter.

The entry's data is pointed to by p, and the size of the data is specified by c.

This function always returns 1.

Note: In versions of RPM prior to 2.3.3, headerAddEntry() will only work successfully with
headers produced by headerCopy() and headerNew(). In particular, headerAddEntry()
is not supported when used to add entries to a header produced by headerRead(). Later versions
of RPM lift this restriction.

Determine If Entry Is In Header — headerIsEntry()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

A Guide to the RPM Library API

309

int headerIsEntry(Header h,
int_32 tag);

This function returns 1 if an entry with tag tag is present in header h. If the tag is not present, this
function returns 0.

Header Iterator Support
Iterators are used as a means to step from entry to entry, through an entire header. The functions in
this section are used to create, use, and free iterators.

Create an Iterator — headerInitIterator()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

HeaderIterator headerInitIterator(Header h);

This function returns a newly-created iterator for the header h.

Step To the Next Entry — headerNextIterator()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

int headerNextIterator(HeaderIterator iter,
int_32 *tag,
int_32 *type,
void **p,
int_32 *c);

This function steps to the next entry in the header specified when the iterator iter was created with
headerInitIterator(). The next entry's tag, type, data, and size are returned in tag, type,
p, and c, respectively. Note that if the entry type is RPM_STRING_ARRAY_TYPE, you must is-
sue a free() on p when done with the data.

This function returns 1 if successful, and 0 if there are no more entries in the header.

Free An Iterator — headerFreeIterator()

#include <rpm/rpmlib.h>
#include <rpm/header.h>

void headerFreeIterator(HeaderIterator iter);

This function frees the resources used by the iterator iter.

A Guide to the RPM Library API

310

Example Code
In this section, we'll study example programs that make use of rpmlib to perform an assortment of
commonly-required operations.

Example #1
In this example, we'll use a number of rpmlib's header manipulation functions.

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>

#include <rpm/rpmlib.h>

Here we've included rpmlib.h, which is necessary for all programs that use rpmlib.

void main(int argc, char ** argv)
{
HeaderIterator iter;
Header h, sig;
int_32 itertag, type, count;
void **p = NULL;
char *blather;
char * name;

int fd, stat;

Here we've defined the program's storage. Note in particular the HeaderIterator, Header, and int_32
datatypes.

if (argc == 1) {
fd = 0;

} else {
fd = open(argv[1], O_RDONLY, 0644);

}

if (fd < 0) {
perror("open");
exit(1);

}

Standard stuff here. The first argument is supposed to be an RPM package file. It is opened here. If
there is no argument on the command line, the program will use stdin instead.

stat = rpmReadPackageInfo(fd, &sig, &h);
if (stat) {
fprintf(stderr,

A Guide to the RPM Library API

311

"rpmReadPackageInfo error status: %d\n%s\n",
stat, strerror(errno));

exit(stat);
}

Here things start to get interesting! The signature and headers are read from package file that was
just opened. If you noticed above, we've defined sig and h to be of type Header. That means we
can use rpmlib's header-related functions on them. After a little bit of error checking, and it's time to
move on…

headerGetEntry(h, RPMTAG_NAME, &type, (void **) &name, &count);

if (headerIsEntry(h, RPMTAG_PREIN)) {
printf("There is a preinstall script for %s\n", name);

}

if (headerIsEntry(h, RPMTAG_POSTIN)) {
printf("There is a postinstall script for %s\n", name);

}

Now that we have the package's header, we get the package name (specified by the RP-
MTAG_NAME above). Next, we see if the package has pre-install (RPMTAG_PREIN) or post-
install (RPMTAG_POSTIN) scripts. If there are, we print out a message, along with the package
name.

printf("Dumping signatures...\n");
headerDump(sig, stdout, 1);

rpmFreeSignature(sig);

Turning to the other Header structure we've read, we print out the package's signatures in human-
readable form. When we're done, we free the block of signatures.

printf("Iterating through the header...\n");

iter = headerInitIterator(h);

Here we set up an iterator for the package's header. This will allow us to step through each entry in
the header.

while (headerNextIterator(iter, &itertag, &type, p, &count)) {
switch (itertag) {
case RPMTAG_SUMMARY:
blather = *p;
printf("The Summary: %s\n", blather);
break;

case RPMTAG_FILENAMES:
printf("There are %d files in this package\n", count);
break;

A Guide to the RPM Library API

312

}

This loop uses headerNextIterator() to return each entry's tag, type, data, and size. By us-
ing a switch statement on the tag, we can perform different operations on each type of entry in the
header.

}

headerFreeIterator(iter);

headerFree(h);

}

This is the housecleaning section of the program. First we free the iterator that we've been using,
and finally the header itself. Running this program on a package gives us the following output:

./dump amanda-client-2.3.0-2.i386.rpm

There is a postinstall script for amanda-client
Dumping signatures...
Entry count: 2
Data count : 20

CT TAG TYPE OFSET COUNT
Entry : 000 (1000)NAME INT32_TYPE 0x00000000 00000001

Data: 000 0x00029f5d (171869)
Entry : 001 (1003)SERIAL BIN_TYPE 0x00000004 00000016

Data: 000 27 01 f9 97 d8 2c 36 40
Data: 008 c6 4a 91 45 32 13 d1 62

Iterating through the header...
The Summary: Client-side Amanda package
There are 11 files in this package

#

Example #2
This example delves a bit more into the database-related side of rpmlib. After initializing rpmlib's
variables by reading the appropriate rpmrc files, the code traverses the database records, looking
for a specific package. That package's header is then dumped in its entirety.

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>

#include <rpm/rpmlib.h>

As before, this is the normal way of including all of rpmlib's definitions.

A Guide to the RPM Library API

313

void main(int argc, char ** argv)
{

Header h;
int offset;
int dspBlockNum = 0; /* default to all */
int blockNum = 0;
int_32 type, count;
char * name;
rpmdb db;

Here are the data declarations. Note the declaration of db: this is how we will be accessing the RPM
database.

printf("The database path is: %s\n",
rpmGetVar(RPMVAR_DBPATH) ? rpmGetVar(RPM_DBPATH) : "(none)");

rpmReadConfigFiles(NULL, NULL, NULL, 0);

printf("The database path is: %s\n",
rpmGetVar(RPMVAR_DBPATH) ? rpmGetVar(RPM_DBPATH) : "(none)");

Before opening the RPM database, it's necessary to know where the database resides. This informa-
tion is stored in rpmrc files, which are read by rpmReadConfigFiles(). To show that this
function is really doing its job, we retrieve the RPM database path before and after the rpmrc files
are read. Note that we test the return value of rpmGetVar(RPM_DBPATH) and, if it is null, we in-
sert (none) in the printf() output. This prevents possible core dumps if no database path has
been set, and besides, it's more user-friendly.

if (rpmdbOpen("", &db, O_RDONLY, 0644) != 0) {
fprintf(stderr, "cannot open /var/lib/rpm/packages.rpm\n");
exit(1);

}

Here we're opening the RPM database, and doing some cursory error checking to make sure we
should continue.

offset = rpmdbFirstRecNum(db);

We get the offset of the first database record…

while (offset) {

h = rpmdbGetRecord(db, offset);
if (!h) {

fprintf(stderr, "headerRead failed\n");
exit(1);

A Guide to the RPM Library API

314

}

Here we start a while loop based on the record offset. As long as there is a non-zero offset (meaning
that there is still an available record), we get the record. If there's a problem getting the record, we
exit.

headerGetEntry(h, RPMTAG_NAME, &type, (void **) &name, &count);
if (strcmp(name, argv[1]) == 0)
headerDump(h, stdout, 1);

Next, we get the package name entry from the record, and compare it with the name of the package
we're interested in. If it matches, we dump the contents of the entire record.

headerFree(h);

offset = rpmdbNextRecNum(db, offset);
}

At the end of the loop, we free the record, and get the offset to the next record.

rpmdbClose(db);
}

At the end, we close the database, and exit.

Here's the program's output, edited for brevity. Notice that the database path changes from (null)
to /var/lib/rpm after the rpmrc files are read.

./showdb amanda-client

The database path is: (null)
The database path is: /var/lib/rpm
Entry count: 37
Data count : 5219

CT TAG TYPE OFSET COUNT
Entry : 000 (1000)NAME STRING_TYPE 0x00000000 00000001

Data: 000 amanda-client
Entry : 001 (1001)VERSION STRING_TYPE 0x0000000e 00000001

Data: 000 2.3.0
Entry : 002 (1002)RELEASE STRING_TYPE 0x00000014 00000001

Data: 000 7
Entry : 003 (1004)SUMMARY STRING_TYPE 0x00000016 00000001

Data: 000 Client-side Amanda package
Entry : 004 (1005)DESCRIPTION STRING_TYPE 0x00000031 00000001
…
Entry : 017 (1027)FILENAMES STRING_ARRAY_TYPE 0x00000df3 00000015

Data: 000 /usr/doc/amanda-client-2.3.0-7
Data: 001 /usr/doc/amanda-client-2.3.0-7/COPYRIGHT

A Guide to the RPM Library API

315

Data: 002 /usr/doc/amanda-client-2.3.0-7/INSTALL
Data: 003 /usr/doc/amanda-client-2.3.0-7/README
Data: 004 /usr/doc/amanda-client-2.3.0-7/SYSTEM.NOTES
Data: 005 /usr/doc/amanda-client-2.3.0-7/WHATS.NEW
Data: 006 /usr/doc/amanda-client-2.3.0-7/amanda-client.README

…
Entry : 034 (1049)REQUIRENAME STRING_ARRAY_TYPE 0x0000141c 00000006

Data: 000 libc.so.5
Data: 001 libdb.so.2
Data: 002 grep
Data: 003 sed
Data: 004 NetKit-B
Data: 005 dump

…

#

As can be seen, everything that you could possibly want to know about an installed package is avail-
able using this method.

Example #3
This example is similar in function to the previous one, except that it uses rpmlib's search functions
to find the desired package record:

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>

#include <rpm/rpmlib.h>

Here we include rpmlib's definitions.

void main(int argc, char ** argv)
{

Header h;
int stat;
rpmdb db;
dbiIndexSet matches;

Here are the storage declarations.

if (argc != 2) {
fprintf(stderr, "showdb2 <search term>\n");
exit(1);

}

rpmReadConfigFiles(NULL, NULL, NULL, 0);

if (rpmdbOpen("", &db, O_RDONLY, 0644) != 0) {
fprintf(stderr, "cannot open /var/lib/rpm/packages.rpm\n");

A Guide to the RPM Library API

316

exit(1);
}

In this section, we do some argument processing, processing the rpmrc files, and open the RPM
database.

stat = rpmdbFindPackage(db, argv[1], &matches);
printf("Status is: %d\n", stat);
if (stat == 0) {
if (matches.count) {
printf("Number of matches: %d\n", matches.count);
h = rpmdbGetRecord(db, matches.recs[0].recOffset);
if (h) headerDump(h, stdout, 1);
headerFree(h);
dbiFreeIndexRecord(matches);

}
}

In this section we use rpmdbFindPackage() to search for the desired package. After checking
for successful status, the count of matching package records is checked. If there is at least one
match, the first matching record is retrieved, and dumped. Note that there could be more than one
match. Although this example doesn't dump more than the first matching record, it would be simple
to access all matches by stepping through the matches.recs array.

Once we're done with the record, we free it, as well as the list of matching records.

rpmdbClose(db);
}

The last thing we do before exiting is to close the database. Here's some sample output from the pro-
gram. Note the successful status, and the number of matches printed before the dump:

./showdb2 rpm

Status is: 0
Number of matches: 1
Entry count: 37
Data count : 2920

CT TAG TYPE OFSET COUNT
Entry : 000 (1000)NAME STRING_TYPE 0x00000000 00000001

Data: 000 rpm
Entry : 001 (1001)VERSION STRING_TYPE 0x00000004 00000001

Data: 000 2.2.9
Entry : 002 (1002)RELEASE STRING_TYPE 0x0000000a 00000001

Data: 000 1
Entry : 003 (1004)SUMMARY STRING_TYPE 0x0000000c 00000001

Data: 000 Red Hat Package Manager
…
Entry : 034 (1049)REQUIRENAME STRING_ARRAY_TYPE 0x00000b40 00000003

Data: 000 libz.so.1
Data: 001 libdb.so.2
Data: 002 libc.so.5

Entry : 035 (1050)REQUIREVERSION STRING_ARRAY_TYPE 0x00000b5f 00000003
Data: 000

A Guide to the RPM Library API

317

Data: 001
Data: 002

Entry : 036 (1064)RPMVERSION STRING_TYPE 0x00000b62 00000001
Data: 000 2.2.9

#

A Guide to the RPM Library API

318

Part III. Appendixes

Table of Contents
A. Format of the RPM File ... 324

RPM File Naming Convention .. 324
RPM File Format ... 325

Parts of an RPM File ... 325
The Lead .. 325
Wanted: A New RPM Data Structure ... 327
The Signature .. 329
The Header ... 332
The Archive .. 335

Tools For Studying RPM Files .. 336
Identifying RPM files with the file(1) command ... 337

B. The rpmrc File ... 339
Using the --showrc Option .. 339
Different Places an rpmrc File Resides ... 340

/usr/lib/rpmrc ... 340
/etc/rpmrc ... 342
.rpmrc in the user's login directory ... 342
File indicated by the --rcfile option .. 342

rpmrc File Syntax ... 342
rpmrc File Entries .. 343

arch_canon .. 343
os_canon .. 343
buildarchtranslate .. 343
buildostranslate .. 344
arch_compat .. 344
os_compat ... 344
builddir ... 345
buildroot ... 345
cpiobin .. 345
dbpath .. 345
defaultdocdir ... 345
distribution .. 345
excludedocs .. 345
ftpport .. 346
ftpproxy .. 346
messagelevel ... 346
netsharedpath .. 346
optflags ... 346
packager .. 347
pgp_name .. 347
pgp_path ... 347
require_distribution .. 347
require_icon ... 347
require_vendor .. 348
rpmdir .. 348
signature ... 348
sourcedir ... 348
specdir .. 348
srcrpmdir .. 348
timecheck .. 349
tmppath .. 349
topdir .. 349
vendor ... 349

C. Concise RPM Command Reference ... 350
Global Options .. 350
Informational Options ... 350
Query Mode .. 350

320

Package Specification Options To Query Mode ... 350
Information Selection Options To Query Mode .. 351

Verify Mode ... 351
Options To Verify Mode ... 351

Install Mode .. 352
Options To Install Mode .. 352

Upgrade Mode ... 352
Options To Upgrade Mode ... 352

Erase Mode ... 353
Options To Erase Mode ... 353

Build Mode ... 353
Build Mode Stages ... 353
Options To Build Mode ... 354

Rebuild Mode .. 354
Options To Rebuild Mode .. 354

Recompile Mode .. 354
Options To Recompile Mode .. 354

Resign Mode ... 355
Options To Resign Mode ... 355

Add Signature Mode ... 355
Options To Add Signature Mode ... 355

Check Signature Mode .. 355
Options To Check Signature Mode .. 355

Initialize Database Mode ... 355
Options to Initialize database Mode ... 355

Rebuild Database Mode .. 355
Options to Rebuild Database Mode .. 356

D. Available Tags For --queryformat .. 357
List of --queryformat Tags ... 357

The NAME Tag .. 357
The VERSION Tag ... 357
The RELEASE Tag ... 357
The EPOCH Tag ... 357
The SUMMARY Tag ... 358
The DESCRIPTION Tag ... 358
The BUILDTIME Tag ... 358
The BUILDHOST Tag ... 358
The INSTALLTIME Tag ... 358
The SIZE Tag ... 358
The DISTRIBUTION Tag .. 358
The VENDOR Tag .. 359
The GIF Tag ... 359
The XPM Tag ... 359
The LICENSE Tag .. 359
The PACKAGER Tag .. 359
The GROUP Tag ... 359
The CHANGELOG Tag ... 359
The SOURCE Tag ... 359
The PATCH Tag ... 359
The URL Tag .. 360
The OS Tag .. 360
The ARCH Tag ... 360
The PREIN Tag .. 360
The POSTIN Tag .. 360
The PREUN Tag ... 360
The POSTUN Tag ... 360
The FILENAMES Tag ... 360
The FILESIZES Tag ... 361
The FILESTATES Tag .. 361
The FILEMODES Tag ... 361
The FILEUIDS Tag ... 361
The FILEGIDS Tag ... 361
The FILERDEVS Tag .. 361

Appendixes

321

The FILEMTIMES Tag ... 362
The FILEMD5S Tag .. 362
The FILELINKTOS Tag .. 362
The FILEFLAGS Tag .. 362
The ROOT Tag ... 362
The FILEUSERNAME Tag .. 362
The FILEGROUPNAME Tag ... 362
The EXCLUDE Tag .. 363
The EXCLUSIVE Tag ... 363
The ICON Tag .. 363
The SOURCERPM Tag ... 363
The FILEVERIFYFLAGS Tag ... 363
The ARCHIVESIZE Tag ... 363
The PROVIDES Tag ... 363
The REQUIREFLAGS Tag .. 363
The REQUIRENAME Tag ... 364
The REQUIREVERSION Tag .. 364
The NOSOURCE Tag .. 364
The NOPATCH Tag .. 364
The CONFLICTFLAGS Tag .. 364
The CONFLICTNAME Tag ... 364
The CONFLICTVERSION Tag .. 364
The DEFAULTPREFIX Tag .. 365
The BUILDROOT Tag .. 365
The INSTALLPREFIX Tag .. 365
The EXCLUDEARCH Tag ... 365
The EXCLUDEOS Tag .. 365
The EXCLUSIVEARCH Tag ... 365
The EXCLUSIVEOS Tag ... 365
The AUTOREQPROV, AUTOREQ, and AUTOPROV Tags 365
The RPMVERSION Tag .. 366
The TRIGGERSCRIPTS Tag ... 366
The TRIGGERNAME Tag ... 366
The TRIGGERVERSION Tag .. 366
The TRIGGERFLAGS Tag .. 366
The TRIGGERINDEX Tag .. 366
The VERIFYSCRIPT Tag .. 366

E. Concise Spec File Reference ... 367
Comments .. 367
The Preamble .. 367

Package Naming Tags ... 367
Descriptive Tags .. 368
Dependency Tags ... 370
Architecture- and Operating System-Specific Tags ... 372
Directory-related Tags .. 373
Source and Patch Tags .. 374

Scriptlets .. 375
Build Scriptlets .. 375
Install/Erase Scriptlets ... 376
%verifyscript Directive .. 378

Macros ... 378
The %setup Macro .. 378
The %patch Macro .. 380

The %files List .. 381
Directives For the %files list .. 381

File-related Directives ... 382
Directory-related Directives ... 383

%package Directive .. 384
The %package -n Option .. 384

Conditionals .. 384
The %ifarch Conditional .. 384
The %ifnarch Conditional .. 385
The %ifos Conditional .. 385

Appendixes

322

The %ifnos Conditional .. 385
The %else Conditional .. 385
The %endif Conditional .. 386

F. RPM-related Resources ... 387
Where to Get RPM ... 387

FTP Sites .. 387
What Do I Need? ... 387

Where to Talk About RPM .. 389
The rpm-list Mailing List ... 389
The redhat-list Mailing List ... 389
The redhat-digest Mailing List ... 390

RPM On the World Wide Web ... 390
RPM's License ... 391
GNU GENERAL PUBLIC LICENSE .. 391

Preamble .. 391
GNU GENERAL PUBLIC LICENSE .. 392
How to Apply These Terms to Your New Programs .. 395

G. An Introduction to PGP ... 397
PGP — Privacy for Regular People ... 397

Keys your Locksmith Wouldn't Understand .. 397
Are RPM Packages Encrypted? ... 398
Do All RPM Packages Have Digital Signatures? .. 398
So Much to Cover, So Little Time ... 399

Installing PGP for RPM's Use ... 399
Obtaining PGP .. 399
Building PGP .. 401
Ready to Go! ... 401

Index ... 402

Appendixes

323

Appendix A. Format of the RPM File
RPM File Naming Convention

While RPM will run just as well if a package file has been renamed, when the packages are created
during RPM's build process, they follow a specific naming convention. The convention is:

name-version-release.architecture.rpm

where:

• name is a name describing the packaged software.

• version is the version of the packaged software.

• release is the number of times this version of the software has been packaged.

• architecture is a shorthand name describing the type of computer hardware the packaged
software is meant to run on. It may also be the string src, or nosrc. Both of these strings in-
dicate the file is an RPM source package. The nosrc string means that the file contains only
package building files, while the src string means the file contains the necessary package build-
ing files and the software's source code.

A few notes are in order. Normally, the package name is taken verbatim from the packaged soft-
ware's name. Occasionally, this approach won't work — usually this occurs when the software is
split into multiple "subpackages," each supporting a different set of functions. An example of this
situation would be the way ncurses was packaged on Red Hat Linux Linux. The package incor-
porating ncurses basic functionality was called ncurses, while the package incorporating those
parts of ncurses' program development functionality was named ncurses-devel.

The version number is normally taken verbatim from the package's version. The only restriction
placed on the version is that it cannot contain a dash "-".

The release can be thought of as the package's version. Traditionally it is a number, starting at 1,
that shows how many times the packaged software, at a given version, has been built. This is tradi-
tion and not a restriction, however. Like the version number, the only restriction is that dashes are
not allowed.

The architecture specifier is a string that indicates what hardware the package has been built for.
There are a number of architectures defined:

• i386 — The Intel x86 family of microprocessors, starting with the 80386.

• alpha — The Digital Alpha/AXP series of microprocessors.

• sparc — Sun Microsystems' SPARC series of chips.

• mips — MIPS Technologies' processors.

• ppc — The Power PC microprocessor family.

• m68k — Motorola's 68000 series of CISC microprocessors.

• SGI — Equivalent to "MIPS".

324

1 Please refer to the section called “ Identifying RPM files with the file(1) command ” for a discussion on identifying RPM package files
with the file command.
2 The header is discussed in the section called “The Header”.

This list will almost certainly change. For the most up-to-date list, please refer to the file /
usr/lib/rpmrc. It contains information used internally by RPM, including a list of architectures
and equivalent code numbers.

RPM File Format
While the following details concerning the actual format of an RPM package file were accurate at
the time this was written, three points should be kept in mind:

1. The file format is subject to change.

2. If a package file is to be manipulated somehow, you are strongly urged to use the appropriate
rpmlib routines to access the package file. Why? See point number 1!

3. This appendix describes the most recent version of the RPM file format: version 3. The file(1)
utility can be used to see a package's file format version.

With those caveats out of the way, let's take a look inside an RPM file…

Parts of an RPM File
Every RPM package file can be divided into four distinct sections. They are:

• The lead.

• The signature.

• The header.

• The archive.

Package files are written to disk in network byte order. If required, RPM will automatically convert
to host byte order when the package file is read. Let's take a look at each section, starting with the
lead.

The Lead
The lead is the first part of an RPM package file. In previous versions of RPM, it was used to store
information used internally by RPM. Today, however, the lead's sole purpose is to make it easy to
identify an RPM package file. For example, the file(1) command uses the lead. 1 All the information
contained in the lead has been duplicated or superseded by information contained in the header. 2

RPM defines a C structure that describes the lead:

struct rpmlead {
unsigned char magic[4];
unsigned char major, minor;
short type;
short archnum;
char name[66];
short osnum;
short signature_type;
char reserved[16];

Format of the RPM File

325

3 It should be noted that the architecture used internally by RPM is actually stored in the header. This value is strictly for file(1)'s use.

} ;

Let's take a look at an actual package file and examine the various pieces of data that make up the
lead. In the following display, the number to the left of the colon is the byte offset, in hexadecimal,
from the start of the file. The eight groups of four characters show the hex value of the bytes in the
file — two bytes per group of four characters. Finally, the characters on the right show the ASCII
values of the data bytes. When a data byte's value results in a non-printable character, a dot (".") is
inserted instead. Here are the first thirty-two bytes of a package file — in this case, the package file
rpm-2.2.1-1.i386.rpm:

00000000: edab eedb 0300 0000 0001 7270 6d2d 322erpm-2.
00000010: 322e 312d 3100 0000 0000 0000 0000 0000 2.1-1...........

The first four bytes (edab eedb) are the magic values that identify the file as an RPM package
file. Both the file command and RPM use these magic numbers to determine whether a file is legit-
imate or not.

The next two bytes (0300) indicate RPM file format version. In this case, the file's major version
number is 3, and the minor version number is 0. Versions of RPM later than 2.1 create version 3.0
package files.

The next two bytes (0000) determine what type of RPM file the file is. There are presently two
types defined:

• Binary package file (type = 0000)

• Source package file (type = 0001)

In this case, the file is a binary package file.

The next two bytes (0001) are used to store the architecture that the package was built for. In this
case, the number 1 refers to the i386 architecture. 3 In the case of a source package file, these two
bytes should be ignored, as source packages are not built for a specific architecture.

The next sixty-six bytes (starting with 7270 6d2d) contain the name of the package. The name
must end with a null byte, which leaves sixty-five bytes for RPM's usual name-version-release-style
name. In this case, we can read the name from the right side of the output:

rpm-2.2.1-1

Since the name rpm-2.2.1-1 is shorter than the sixty-five bytes allocated for the name, the
leftover bytes are filled with nulls.

Skipping past the space allocated for the name, we see two bytes (0001):

00000040: 0000 0000 0000 0000 0000 0000 0001 0005
00000050: 0400 0000 24e1 ffbf 6bb3 0008 00e6 ffbf$...k.......

Format of the RPM File

326

These bytes represent the operating system for which this package was built. In this case, 1 equals
Linux. As with the architecture-to-number translations, the operating system and corresponding
code numbers can be found in the file, /usr/lib/rpmrc.

The next two bytes (0005) indicate the type of signature used in the file. A type 5 signature is new
to version 3 RPM files. The signature appears next in the file, but we need to discuss an additional
detail before exploring the signature.

Wanted: A New RPM Data Structure
By looking at the C structure that defines the lead, and matching it with the bytes in an actual pack-
age file, it's trivial to extract the data from the lead. From a programming standpoint, it's also easy to
manipulate data in the lead — It's simply a matter of using the element names from the structure.
But there's a problem. And because of that problem the lead is no longer used internally by RPM.

The lead: An Abandoned Data Structure

What's the problem, and why is the lead no longer used by RPM? The answer to these questions is a
single word: inflexibility. The technique of defining a C structure to access data in a file just isn't
very flexible. Let's look at an example.

Flip back to the lead's C structure in the section called “The Lead”. Say, for example, that some soft-
ware comes along, and it has a long name. A very long name. A name so long, in fact, that the 66
bytes defined in the structure element name just couldn't hold it.

What can we do? Well, we could certainly change the structure such that the name element would
be 100 bytes long. But once a new version of RPM is created using this new structure, we have two
problems:

1. Any package file created with the new version of RPM wouldn't be able to read older package
formats.

2. Any older version of RPM would be unable to install packages created with the newer version
of RPM.

Not a very good situation! Ideally, we would like to somehow eliminate the requirement that the
format of the data written to a package file be engraved in granite. We should be able to do the fol-
lowing things, all without losing compatibility with existing versions of RPM.

• Add extra data to the file format.

• Change the size of existing data.

• Reorder the data.

Sounds like a big problem, but there's a solution…

Is There a Solution?

The solution is to standardize the method by which information is retrieved from a file. This is done
by creating a well-defined data structure that contains easily searched information about the data,
and then physically separating that information from the data.

When the data is required, it is found by using the easily searched information, which points to the
data itself. The benefits are, that the data can be placed anywhere in the file, and that the format of
the data itself can change.

Format of the RPM File

327

The Solution: The Header Structure

The header structure is RPM's solution to the problem of easily manipulating information in a stand-
ard way. The header structure's sole purpose in life is to contain zero or more pieces of data. A file
can have more than one header structure in it. In fact, an RPM package file has two — the signature,
and the header. It was from this header that the header structure got its name.

There are three sections to each header structure. The first section is known as the header structure
header. The header structure header is used to identify the start of a header structure, its size, and
the number of data items it contains.

Following the header structure header is an area called the index. The index contains one or more in-
dex entries. Each index entry contains information about, and a pointer to, a specific data item.

After the index comes the store. It is in the store that the data items are kept. The data in the store is
packed together as closely as possible. The order in which the data is stored is immaterial — a far
cry from the C structure used in the lead.

The Header Structure in Depth

Let's take a more in-depth look at the actual format of a header structure, starting with the header
structure header:

The Header Structure Header

The header structure header always starts with a three-byte magic number: 8e ad e8. Following
this is a one-byte version number. Next are four bytes that are reserved for future expansion. After
the reserved bytes, there is a four-byte number that indicates how many index entries exist in this
header structure, followed by another four-byte number indicating how many bytes of data are part
of the header structure.

The Index Entry

The header structure's index is made up of zero or more index entries. Each entry is sixteen bytes
longs. The first four bytes contain a tag — a numeric value that identifies what type of data is poin-
ted to by the entry. The tag values change according to the header structure's position in the RPM
file. A list of the actual tag values, and what they represent, will be included later in this appendix.

Following the tag, is a four-byte type, which is a numeric value that describes the format of the data
pointed to by the entry. The types and their values do not change from header structure to header
structure. Here is the current list:

• NULL = 0

• CHAR = 1

• INT8 = 2

• INT16 = 3

• INT32 = 4

• INT64 = 5

• STRING = 6

• BIN = 7

• STRING_ARRAY = 8

A few of the data types might need some clarification. The STRING data type is simply a null-

Format of the RPM File

328

terminated string, while the STRING_ARRAY is a collection of strings. Finally, the BIN data type
is a collection of binary data. This is normally used to identify data that is longer than an INT, but
not a printable STRING.

Next is a four-byte offset that contains the position of the data, relative to the beginning of the store.
We'll talk about the store in just a moment.

Finally, there is a four-byte count that contains the number of data items pointed to by the index
entry. There are a few wrinkles to the meaning of the count, and they center around the STRING
and STRING_ARRAY data types. STRING data always has a count of 1, while STRING_ARRAY
data has a count equal to the number of strings contained in the store.

The Store

The store is where the data contained in the header structure is stored. Depending on the data type
being stored, there are some details that should be kept in mind:

• For STRING data, each string is terminated with a null byte.

• For INT data, each integer is stored at the natural boundary for its type. A 64-bit INT is stored
on an 8-byte boundary, a 16-bit INT is stored on a 2-byte boundary, and so on.

• All data is in network byte order.

With all these details out of the way, let's take a look at the signature.

The Signature
The signature section follows the lead in the RPM package file. It contains information that can be
used to verify the integrity, and optionally, the authenticity of the majority of the package file. The
signature is implemented as a header structure.

You probably noticed the word, "majority", above. The information in the signature header structure
is based on the contents of the package file's header and archive only. The data in the lead and the
signature header structure are not included when the signature information is created, nor are they
part of any subsequent checks based on that information.

While that omission might seem to be a weakness in RPM's design, it really isn't. In the case of the
lead, since it is used only for easy identification of package files, any changes made to that part of
the file would, at worst, leave the file in such a state that RPM wouldn't recognize it as a valid pack-
age file. Likewise, any changes to the signature header structure would make it impossible to verify
the file's integrity, since the signature information would have been changed from their original val-
ues.

Analyzing the Signature Area

Using our new-found knowledge of header structures, let's take a look at the signatures in rpm-
2.2.1-1.i386.rpm:

00000060: 8ead e801 0000 0000 0000 0003 0000 00ac

The first three bytes (8ead e8) contain the magic number for the start of the header structure. The
next byte (01) is the header structure's version.

As we discussed earlier, the next four bytes (0000 0000) are reserved. The four bytes after that
(0000 0003) represent the number of index entries in the signature section, namely, three. Fol-

Format of the RPM File

329

lowing that are four bytes (0000 00ac) that indicate how many bytes of data are stored in the sig-
nature. The hex value 00ac, when converted to decimal, means the store is 172 bytes long.

Following the first 16 bytes is the index. Each of the three index entries in this header structure con-
sists of four 32-bit integers, in the following order:

• Tag

• Type

• Offset

• Count

Let's take a look at the first index entry:

00000070: 0000 03e8 0000 0004 0000 0000 0000 0001

The tag consists of the first four bytes (0000 03e8), which is 1000 when translated from hex.
Looking in the RPM source directory at the file lib/signature.h, we find the following tag
definitions:

#define SIGTAG_SIZE 1000
#define SIGTAG_MD5 1001
#define SIGTAG_PGP 1002

So the tag we are studying is for a size signature. Let's continue.

The next four bytes (0000 0004) contain the data type. As we saw earlier, data type 4 means that
the data stored for this index entry, is a 32-bit integer. Skipping the next four bytes for a moment,
the last four bytes (0000 0001) are the number of 32-bit integers pointed to by this index entry.

Now, let's go back to the four bytes prior to the count (0000 0000). This number is the offset, in
bytes, at which the size signature is located. It has a value of zero, but the question is, zero bytes
from what? The answer, although it doesn't do us much good, is that the offset is calculated from the
start of the store. So first we must find where the store begins, and we can do that by performing a
simple calculation.

First, go back to the start of the signature section. (We've made a copy here so you won't need to flip
from page to page)

00000060: 8ead e801 0000 0000 0000 0003 0000 00ac

After the magic, the version, and the four reserved bytes, there is the number of index entries (0000
0003). Since we know that each index entry is sixteen bytes long (four for the tag, four for the type,
four for the offset, and four for the count), we can multiply the number of entries (3) by the number
of bytes in each entry (16), and obtain the total size of the index, which is 48 decimal, or 30 in hex.
Since the first index entry starts at hex offset 70, we can simply add hex 30 to hex 70, and get, in
hex, offset a0. So let's skip down to offset a0, and see what's there:

Format of the RPM File

330

000000a0: 0004 4c4f b025 b097 1597 0132 df35 d169 ..LO.%.....2.5.i

If we've done our math correctly, the first four bytes (0004 4c4f) should represent the size of this
file. Converting to decimal, this is 281,679. Let's take a look at the size of the actual file:

ls -al rpm-2.2.1-1.i386.rpm

-rw-rw-r-- 1 ed ed 282015 Jul 21 16:05 rpm-2.2.1-1.i386.rpm

#

Hmmm, something's not right. Or is it? It looks like we're short by 336 bytes, or in hex, 150. Inter-
esting how that's a nice round hex number, isn't it? For now, let's continue through the remainder of
the index entries, and see if hex 150 pops up elsewhere.

Here's the next index entry. It has a tag of decimal 1001, which is an MD5 checksum. It is type 7,
which is the BIN data type, it is 16 bytes long, and its data starts four bytes after the beginning of
the store:

00000080: 0000 03e9 0000 0007 0000 0004 0000 0010

And here's the data. It starts with b025 (Remember that offset of four!) and ends on the second line
with 5375. This is a 128-bit MD5 checksum of the package file's header and archive sections.

000000a0: 0004 4c4f b025 b097 1597 0132 df35 d169 ..LO.%.....2.5.i
000000b0: 329c 5375 8900 9503 0500 31ed 6390 a520 2.Su......1.c..

Ok, let's jump back to the last index entry:

00000090: 0000 03ea 0000 0007 0000 0014 0000 0098

It has a tag value of 03ea (1002 in decimal — a PGP signature block) and is also a BIN data type.
The data starts 20 decimal bytes from the start of the data area, which would put it at file offset b4
(in hex). It's a biggie — 152 bytes long! Here's the data, starting with 8900:

000000b0: 329c 5375 8900 9503 0500 31ed 6390 a520 2.Su......1.c..
000000c0: e8f1 cba2 9bf9 0101 437b 0400 9c8e 0ad4C{......
000000d0: 3790 364e dfb0 9a8a 22b5 b0b3 dc30 4c6f 7.6N...."....0Lo
000000e0: 91b8 c150 704e 2c64 d88a 8fca 18ab 5b6f ...PpN,d......[o
000000f0: f041 ebc8 d18a 01c9 3601 66f0 9ddd e956 .A......6.f....V
00000100: 3142 61b3 b1da 8494 6bef 9c19 4574 c49f 1Ba.....k...Et..
00000110: ee17 35e1 d105 fb68 0ce6 715a 60f1 c660 ..5....h..qZ`..`

Format of the RPM File

331

00000120: 279f 0306 28ed 0ba0 0855 9e82 2b1c 2ede '...(....U..+...
00000130: e8e3 5090 6260 0b3c ba04 69a9 2573 1bbb ..P.b`.<..i.%s..
00000140: 5b65 4de1 b1d2 c07f 8afa 4a9b 0000 0000 [eM.......J.....

It ends with the bytes 4a9b. This is a 1,216-bit PGP signature block. It is also the end of the signa-
ture section. There are four null bytes following the last data item in order to round the size out so
that it ends on an 8-byte boundary. This means that the offset of the next section starts at offset 150,
in hex. Say, wasn't the size in the size signature off by 150 hex? Yes, the size in the signature is the
size of the file — less the size of the lead and the signature sections.

The Header
The header section contains all available information about the package. Entries such as the pack-
age's name, version, and file list, are contained in the header. Like the signature section, the header
is in header structure format. Unlike the signature, which has only three possible tag types, the head-
er has more than sixty different tags. The list of currently defined tags appears later in this appendix
on the section called “Header Tag Listing”. Be aware that the list of tags changes frequently — the
definitive list appears in the RPM sources in lib/rpmlib.h.

Analyzing the Header

The easiest way to find the start of the header is to look for the second header structure by scanning
for its magic number (8ead e8). The sixteen bytes, starting with the magic, are the header struc-
tures's header. They follow the same format as the header in the signature's header structure:

00000150: 8ead e801 0000 0000 0000 0021 0000 09d3!....

As before, the byte following the magic identifies this header structure as being in version 1 format.
Following the four reserved bytes, we find the count of entries stored in the header (0000 0021).
Converting to decimal, we find that there are 33 entries in the header. The next four bytes (0000
09d3) converted to decimal, tell us that there are 2,515 bytes of data in the store.

Since the header is a header structure just like the signature, we know that the next 16 bytes are the
first index entry:

00000160: 0000 03e8 0000 0006 0000 0000 0000 0001

The first four bytes (0000 03e8) are the tag, which is the tag for the package name. The next four
bytes indicate the data is type 6, or a null-terminated string. There's an offset of zero in the next four
bytes, meaning that the data for this tag is first in the store. Finally, the last four bytes (0000
0001) show that the data count is 1, which is the only legal value for data of type STRING.

To find the data, we need to take the offset from the start of the first index entry in the header (160),
and add in the count of index entries (21) multiplied by the size of an index entry (10). Doing the
math (all the values shown, are in hex, remember!), we arrive at the offset to the store, hex 370.
Since the offset for this particular index entry is zero, the data should start at offset 370:

00000370: 7270 6d00 322e 322e 3100 3100 5265 6420 rpm.2.2.1.1.Red

Format of the RPM File

332

Since the data type for this entry is a null-terminated string, we need to keep reading bytes until we
reach a byte whose numeric value is zero. We find the bytes 72, 70, 6d, and 00 — a null. Looking
at the ASCII display on the right, we find that the bytes form the string rpm, which is the name of
this package.

Now for a slightly more complicated example. Let's look at the following index entry:

00000250: 0000 0403 0000 0008 0000 0199 0000 0018

Tag 403 means that this entry is a list of filenames. The data type 8, or STRING_ARRAY, seems to
bear this out. From the previous example, we found that the data area for the header began at offset
370. Adding the offset to the first filename (199), gives us 509. Finally, the count of 18 hex means
that there should be 24 null-terminated strings containing filenames:

00000500: 696e 6974 6462 0a0a 002f 6269 6e2f 7270 initdb.../bin/rp
00000510: 6d00 2f65 7463 2f72 706d 7263 002f 7573 m./etc/rpmrc./us

The byte at offset 509 is 2f — a "/". Reading up to the first null byte, we find that the first filename
is /bin/rpm, followed by /etc/rpmrc. This continues on for 22 more filenames.

There are many more tags that we could decode, but they are all done in the same manner.

Header Tag Listing

The following list shows the tags available, along with their defined values, for use in the header.
This list is current as of version 4.3 of RPM. For the most up-to-date version, look in the file lib/
rpmlib.h in the latest version of the RPM sources.

#define RPMTAG_NAME 1000
#define RPMTAG_N RPMTAG_NAME
#define RPMTAG_VERSION 1001
#define RPMTAG_V RPMTAG_VERSION
#define RPMTAG_RELEASE 1002
#define RPMTAG_R RPMTAG_RELEASE
#define RPMTAG_EPOCH 1003
#define RPMTAG_E RPMTAG_EPOCH
#define RPMTAG_SERIAL RPMTAG_EPOCH /* backward compatibility */
#define RPMTAG_SUMMARY 1004
#define RPMTAG_DESCRIPTION 1005
#define RPMTAG_BUILDTIME 1006
#define RPMTAG_BUILDHOST 1007
#define RPMTAG_INSTALLTIME 1008
#define RPMTAG_SIZE 1009
#define RPMTAG_DISTRIBUTION 1010
#define RPMTAG_VENDOR 1011
#define RPMTAG_GIF 1012
#define RPMTAG_XPM 1013
#define RPMTAG_LICENSE 1014
#define RPMTAG_COPYRIGHT RPMTAG_LICENSE /* backward compatibility */
#define RPMTAG_PACKAGER 1015
#define RPMTAG_GROUP 1016
#define RPMTAG_CHANGELOG 1017 /* internal */
#define RPMTAG_SOURCE 1018
#define RPMTAG_PATCH 1019
#define RPMTAG_URL 1020

Format of the RPM File

333

#define RPMTAG_OS 1021
#define RPMTAG_ARCH 1022
#define RPMTAG_PREIN 1023
#define RPMTAG_POSTIN 1024
#define RPMTAG_PREUN 1025
#define RPMTAG_POSTUN 1026
#define RPMTAG_OLDFILENAMES 1027 /* obsolete */
#define RPMTAG_FILESIZES 1028
#define RPMTAG_FILESTATES 1029
#define RPMTAG_FILEMODES 1030
#define RPMTAG_FILEUIDS 1031 /* internal */
#define RPMTAG_FILEGIDS 1032 /* internal */
#define RPMTAG_FILERDEVS 1033
#define RPMTAG_FILEMTIMES 1034
#define RPMTAG_FILEMD5S 1035
#define RPMTAG_FILELINKTOS 1036
#define RPMTAG_FILEFLAGS 1037
#define RPMTAG_ROOT 1038 /* internal, obsolete */
#define RPMTAG_FILEUSERNAME 1039
#define RPMTAG_FILEGROUPNAME 1040
#define RPMTAG_EXCLUDE 1041 /* internal, obsolete */
#define RPMTAG_EXCLUSIVE 1042 /* internal, obsolete */
#define RPMTAG_ICON 1043
#define RPMTAG_SOURCERPM 1044
#define RPMTAG_FILEVERIFYFLAGS 1045
#define RPMTAG_ARCHIVESIZE 1046
#define RPMTAG_PROVIDENAME 1047
#define RPMTAG_PROVIDES RPMTAG_PROVIDENAME /* backward compatibility */
#define RPMTAG_REQUIREFLAGS 1048
#define RPMTAG_REQUIRENAME 1049
#define RPMTAG_REQUIREVERSION 1050
#define RPMTAG_NOSOURCE 1051 /* internal */
#define RPMTAG_NOPATCH 1052 /* internal */
#define RPMTAG_CONFLICTFLAGS 1053
#define RPMTAG_CONFLICTNAME 1054
#define RPMTAG_CONFLICTVERSION 1055
#define RPMTAG_DEFAULTPREFIX 1056 /* internal, deprecated */
#define RPMTAG_BUILDROOT 1057 /* internal */
#define RPMTAG_INSTALLPREFIX 1058 /* internal, deprecated */
#define RPMTAG_EXCLUDEARCH 1059
#define RPMTAG_EXCLUDEOS 1060
#define RPMTAG_EXCLUSIVEARCH 1061
#define RPMTAG_EXCLUSIVEOS 1062
#define RPMTAG_AUTOREQPROV 1063 /* internal */
#define RPMTAG_RPMVERSION 1064
#define RPMTAG_TRIGGERSCRIPTS 1065
#define RPMTAG_TRIGGERNAME 1066
#define RPMTAG_TRIGGERVERSION 1067
#define RPMTAG_TRIGGERFLAGS 1068
#define RPMTAG_TRIGGERINDEX 1069
#define RPMTAG_VERIFYSCRIPT 1079
#define RPMTAG_CHANGELOGTIME 1080
#define RPMTAG_CHANGELOGNAME 1081
#define RPMTAG_CHANGELOGTEXT 1082
#define RPMTAG_BROKENMD5 1083 /* internal, obsolete */
#define RPMTAG_PREREQ 1084 /* internal */
#define RPMTAG_PREINPROG 1085
#define RPMTAG_POSTINPROG 1086
#define RPMTAG_PREUNPROG 1087
#define RPMTAG_POSTUNPROG 1088
#define RPMTAG_BUILDARCHS 1089
#define RPMTAG_OBSOLETENAME 1090
#define RPMTAG_OBSOLETES RPMTAG_OBSOLETENAME /* backward compatibility */
#define RPMTAG_VERIFYSCRIPTPROG 1091
#define RPMTAG_TRIGGERSCRIPTPROG 1092
#define RPMTAG_DOCDIR 1093 /* internal */
#define RPMTAG_COOKIE 1094
#define RPMTAG_FILEDEVICES 1095
#define RPMTAG_FILEINODES 1096
#define RPMTAG_FILELANGS 1097

Format of the RPM File

334

#define RPMTAG_PREFIXES 1098
#define RPMTAG_INSTPREFIXES 1099
#define RPMTAG_TRIGGERIN 1100 /* internal */
#define RPMTAG_TRIGGERUN 1101 /* internal */
#define RPMTAG_TRIGGERPOSTUN 1102 /* internal */
#define RPMTAG_AUTOREQ 1103 /* internal */
#define RPMTAG_AUTOPROV 1104 /* internal */
#define RPMTAG_CAPABILITY 1105 /* internal, obsolete */
#define RPMTAG_SOURCEPACKAGE 1106 /* src.rpm header marker */
#define RPMTAG_OLDORIGFILENAMES 1107 /* internal, obsolete */
#define RPMTAG_BUILDPREREQ 1108 /* internal */
#define RPMTAG_BUILDREQUIRES 1109 /* internal */
#define RPMTAG_BUILDCONFLICTS 1110 /* internal */
#define RPMTAG_BUILDMACROS 1111 /* internal, unused */
#define RPMTAG_PROVIDEFLAGS 1112
#define RPMTAG_PROVIDEVERSION 1113
#define RPMTAG_OBSOLETEFLAGS 1114
#define RPMTAG_OBSOLETEVERSION 1115
#define RPMTAG_DIRINDEXES 1116
#define RPMTAG_BASENAMES 1117
#define RPMTAG_DIRNAMES 1118
#define RPMTAG_ORIGDIRINDEXES 1119 /* internal */
#define RPMTAG_ORIGBASENAMES 1120 /* internal */
#define RPMTAG_ORIGDIRNAMES 1121 /* internal */
#define RPMTAG_OPTFLAGS 1122
#define RPMTAG_DISTURL 1123
#define RPMTAG_PAYLOADFORMAT 1124
#define RPMTAG_PAYLOADCOMPRESSOR 1125
#define RPMTAG_PAYLOADFLAGS 1126
#define RPMTAG_INSTALLCOLOR 1127 /* transaction color when installed */
#define RPMTAG_INSTALLTID 1128
#define RPMTAG_REMOVETID 1129
#define RPMTAG_SHA1RHN 1130 /* internal - obsolete */
#define RPMTAG_RHNPLATFORM 1131
#define RPMTAG_PLATFORM 1132
#define RPMTAG_PATCHESNAME 1133 /* placeholder (SuSE) */
#define RPMTAG_PATCHESFLAGS 1134 /* placeholder (SuSE) */
#define RPMTAG_PATCHESVERSION 1135 /* placeholder (SuSE) */
#define RPMTAG_CACHECTIME 1136
#define RPMTAG_CACHEPKGPATH 1137
#define RPMTAG_CACHEPKGSIZE 1138
#define RPMTAG_CACHEPKGMTIME 1139
#define RPMTAG_FILECOLORS 1140
#define RPMTAG_FILECLASS 1141
#define RPMTAG_CLASSDICT 1142
#define RPMTAG_FILEDEPENDSX 1143
#define RPMTAG_FILEDEPENDSN 1144
#define RPMTAG_DEPENDSDICT 1145
#define RPMTAG_SOURCEPKGID 1146
#define RPMTAG_FILECONTEXTS 1147
#define RPMTAG_FSCONTEXTS 1148 /* extension */
#define RPMTAG_RECONTEXTS 1149 /* extension */
#define RPMTAG_POLICIES 1150 /* selinux *.te policy file. */

The Archive
Following the header section is the archive. The archive holds the actual files that comprise the
package. The archive is compressed using GNU zip. We can verify this if we look at the start of the
archive:

00000d40: 0000 001f 8b08 0000 0000 0002 03ec fd7b{
00000d50: 7c13 d516 388e 4e92 691b 4a20 010a 1428 |...8.N.i.J ...(

Format of the RPM File

335

In this example, the archive starts at offset d43. According to the contents of /usr/lib/magic,
the first two bytes of a gzipped file should be 1f8b, which is, in fact, what we see. The following
byte (08) is the flag used by GNU zip to indicate the file has been compressed with gzip's "defla-
tion" method. The eighth byte has a value of 02, which means that the archive has been compressed
using gzip's maximum compression setting. The following byte contains a code indicating the oper-
ating system under which the archive was compressed. A 03 in this byte indicates that the compres-
sion ran under a UNIX-like operating system.

The remainder of the RPM package file is the compressed archive. After the archive is uncom-
pressed, it is an ordinary cpio archive in SVR4 format with a CRC checksum.

Tools For Studying RPM Files
In the tools directory packaged with the RPM sources, are a number of small programs that use
the RPM library to extract the various sections of a package file. Normally used by the RPM de-
velopers for debugging purposes, these tools can also be used to make it easier to understand the
RPM package file format. Here is a list of the programs, and what they do:

• rpmlead — Extracts the lead section from a package file.

• rpmsignature — Extracts the signature section from a package file.

• rpmheader — Extracts the header from a package file.

• rpmarchive — Extracts the archive from a package file.

• dump — Displays a header structure in an easily readable format.

The first four programs take an RPM package file as their input. The package file can be read either
from standard input, or by including the file name on the command line. In either case, the programs
write to standard output. Here is how rpmlead can be used to display the lead from a package file:

rpmlead foo.rpm | od -x

0000000 abed dbee 0003 0000 0100 7072 2d6d 2e32
0000020 2e32 2d31 0031 0000 0000 0000 0000 0000
0000040 0000 0000 0000 0000 0000 0000 0000 0000
…
0000100 0000 0000 0000 0000 0000 0000 0100 0500
0000120 0004 0000 e124 bfff b36b 0800 e600 bfff
0000140

#

Since each of these programs can also act as filters, the following command is equivalent to the one
above:

cat foo.rpm | rpmlead | od -x

0000000 abed dbee 0003 0000 0100 7072 2d6d 2e32
0000020 2e32 2d31 0031 0000 0000 0000 0000 0000
0000040 0000 0000 0000 0000 0000 0000 0000 0000
…
0000100 0000 0000 0000 0000 0000 0000 0100 0500
0000120 0004 0000 e124 bfff b36b 0800 e600 bfff
0000140

#

Format of the RPM File

336

The dump program is used in conjunction with rpmsignature or rpmheader. It makes decoding
header structures a snap:

rpmsignature foo.rpm | dump

Entry count: 3
Data count : 172

CT TAG TYPE OFSET COUNT
Entry : 000 (1000)NAME INT32_TYPE 0x00000000 00000001

Data: 000 0x00044c4f (281679)
Entry : 001 (1001)VERSION BIN_TYPE 0x00000004 00000016

Data: 000 b0 25 b0 97 15 97 01 32
Data: 008 df 35 d1 69 32 9c 53 75

Entry : 002 (1002)RELEASE BIN_TYPE 0x00000014 00000152
Data: 000 89 00 95 03 05 00 31 ed
Data: 008 63 90 a5 20 e8 f1 cb a2
Data: 016 9b f9 01 01 43 7b 04 00
Data: 024 9c 8e 0a d4 37 90 36 4e
Data: 032 df b0 9a 8a 22 b5 b0 b3
Data: 040 dc 30 4c 6f 91 b8 c1 50
Data: 048 70 4e 2c 64 d8 8a 8f ca
Data: 056 18 ab 5b 6f f0 41 eb c8
Data: 064 d1 8a 01 c9 36 01 66 f0
Data: 072 9d dd e9 56 31 42 61 b3
Data: 080 b1 da 84 94 6b ef 9c 19
Data: 088 45 74 c4 9f ee 17 35 e1
Data: 096 d1 05 fb 68 0c e6 71 5a
Data: 104 60 f1 c6 60 27 9f 03 06
Data: 112 28 ed 0b a0 08 55 9e 82
Data: 120 2b 1c 2e de e8 e3 50 90
Data: 128 62 60 0b 3c ba 04 69 a9
Data: 136 25 73 1b bb 5b 65 4d e1
Data: 144 b1 d2 c0 7f 8a fa 4a 9b

#

One aspect of dump worth noting, is that it is optimized for decoding the header section of a pack-
age file. When used with rpmsignature, it displays the tag names used in the header, instead of the
signature tag names. The data is displayed properly in either case, however.

Identifying RPM files with the file(1) com-
mand

The magic file on most UNIX-like systems today should have the necessary information to identi-
fy RPM files. But in case your system doesn't, the following information can be added to the file:

#---
#
RPM: file(1) magic for Red Hat Packages
#
0 beshort 0xedab
>2 beshort 0xeedb RPM
>>4 byte x v%d
>>6 beshort 0 bin
>>6 beshort 1 src
>>8 beshort 1 i386
>>8 beshort 2 Alpha
>>8 beshort 3 Sparc
>>8 beshort 4 MIPS

Format of the RPM File

337

>>8 beshort 5 PowerPC
>>8 beshort 6 68000
>>8 beshort 7 SGI
>>10 string x %s

The output of the file command is succinct:

file baz

baz: RPM v3 bin i386 vlock-1.0-2

#

In this case, the file called baz is a version 3 format RPM file containing release 2 of version 1.0 of
the vlock package, which has been built for the Intel x86 architecture.

Format of the RPM File

338

Appendix B. The rpmrc File
The rpmrc file is used to control RPM's actions. The file's entries have an effect on nearly every
aspect of RPM's operations. Here, we describe the rpmrc files in more detail, as well as the com-
mand used to show how RPM interprets the files.

Using the --showrc Option
As we'll see in a moment, RPM can read more than one rpmrc file, and each file can contain nearly
thirty different types of entries. This can make it difficult to determine what values RPM is actually
using.

Luckily, there's an option that can be used to help make sense of it all. The --showrc option displays
the value for each of the entries. The output is divided into two sections:

1. Architecture and operating system values.

2. rpmrc values.

The architecture and operating system values define the architecture and operating system that RPM
is running on. These values define the environment for both building and installing packages. They
also define which architectures and operating systems are compatible with each other.

The rpmrc values define many aspects of RPM's operation. These values range from the path to
RPM's database, to the name of the person listed as having built the package.

Here's an example of --showrc's output:

rpm --showrc

ARCHITECTURE AND OS:
build arch : i386
build os : Linux
install arch : i486
install os : Linux
compatible arch list : i486 i386
compatible os list : Linux
RPMRC VALUES:
builddir : /usr/src/redhat/BUILD
buildroot : (not set)
cpiobin : cpio
dbpath : /var/lib/rpm
defaultdocdir : /usr/doc
distribution : (not set)
excludedocs : (not set)
ftpport : (not set)
ftpproxy : (not set)
messagelevel : (not set)
netsharedpath : (not set)
optflags : -O2 -m486 -fno-strength-reduce
packager : (not set)
pgp_name : (not set)
pgp_path : (not set)
require_distribution : (not set)
require_icon : (not set)
require_vendor : (not set)
root : (not set)
rpmdir : /usr/src/redhat/RPMS
signature : none
sourcedir : /usr/src/redhat/SOURCES
specdir : /usr/src/redhat/SPECS

339

srcrpmdir : /usr/src/redhat/SRPMS
timecheck : (not set)
tmppath : /var/tmp
topdir : /usr/src/redhat
vendor : (not set)

#

As you can see, the --showrc option clearly displays the values RPM will use. --showrc can also be
used with the --rcfile option, which makes it easy to see the effect of specifying a different rpmrc
file.

Different Places an rpmrc File Resides
RPM looks for rpmrc files in four places:

1. In /usr/lib/, for a file called rpmrc.

2. In /etc/, for a file called rpmrc.

3. In a file called .rpmrc in the user's login directory.

4. In a file specified by the --rcfile option, if the option is present on the command line.

The first three files are read in the order listed, such that if a given rpmrc entry is present in each
file, the value of the entry read last is the one used by RPM. This means, for example, that an entry
in .rpmrc in the user's login directory will always override the same entry in /etc/rpmrc. Like-
wise, an entry in /etc/rpmrc will always override the same entry in /usr/lib/rpmrc.

If the --rcfile option is used, then only /usr/lib/rpmrc and the file following the --rcfile option
are read, in that order. The /usr/lib/rpmrc file is always read first. This cannot be changed.

Let's look at each of these files, starting with /usr/lib/rpmrc.

/usr/lib/rpmrc

The file /usr/lib/rpmrc is always read. It contains information that RPM uses to set some de-
fault values. This file should never be modified! Doing so may cause RPM to operate incorrectly.

After this stern warning, we should note that it's perfectly all right to look at it. Here it is, in fact:

###
Default values, often overridden in /etc/rpmrc

dbpath: /var/lib/rpm
topdir: /usr/src/redhat
tmppath: /var/tmp
cpiobin: cpio
defaultdocdir: /usr/doc

###

Please send new entries to rpm-list@redhat.com

###
Values for RPM_OPT_FLAGS for various platforms

optflags: i386 -O2 -m486 -fno-strength-reduce
optflags: alpha -O2

The rpmrc File

340

optflags: sparc -O2
optflags: m68k -O2 -fomit-frame-pointer

###
Canonical arch names and numbers

arch_canon: i986: i986 1
arch_canon: i886: i886 1
arch_canon: i786: i786 1
arch_canon: i686: i686 1
arch_canon: i586: i586 1
arch_canon: i486: i486 1
arch_canon: i386: i386 1
arch_canon: alpha: alpha 2
arch_canon: sparc: sparc 3
arch_canon: sun4: sparc 3
arch_canon: sun4m: sparc 3
arch_canon: sun4c: sparc 3
This is really a place holder for MIPS.
arch_canon: mips: mips 4
arch_canon: ppc: ppc 5
This is really a place holder for 68000
arch_canon: m68k: m68k 6
This is wrong. We really need globbing in here :-(
arch_canon: IP: sgi 7
arch_canon: IP22: sgi 7

arch_canon: 9000/712: hppa1.1 9

arch_canon: sun4u: usparc 10

###
Canonical OS names and numbers

os_canon: Linux: Linux 1
os_canon: IRIX: Irix 2
This is wrong
os_canon: SunOS5: solaris 3
os_canon: SunOS4: SunOS 4

os_canon: AmigaOS: AmigaOS 5
os_canon: AIX: AIX 5
os_canon: HP-UX: hpux10 6
os_canon: OSF1: osf1 7
os_canon: FreeBSD: FreeBSD 8

###
For a given uname().machine, the default build arch

buildarchtranslate: osfmach3_i986: i386
buildarchtranslate: osfmach3_i886: i386
buildarchtranslate: osfmach3_i786: i386
buildarchtranslate: osfmach3_i686: i386
buildarchtranslate: osfmach3_i586: i386
buildarchtranslate: osfmach3_i486: i386
buildarchtranslate: osfmach3_i386: i386

buildarchtranslate: i986: i386
buildarchtranslate: i886: i386
buildarchtranslate: i786: i386
buildarchtranslate: i686: i386
buildarchtranslate: i586: i386
buildarchtranslate: i486: i386
buildarchtranslate: i386: i386

buildarchtranslate: osfmach3_ppc: ppc

###
Architecture compatibility

The rpmrc File

341

arch_compat: alpha: axp

arch_compat: i986: i886
arch_compat: i886: i786
arch_compat: i786: i686
arch_compat: i686: i586
arch_compat: i586: i486
arch_compat: i486: i386

arch_compat: osfmach3_i986: i986 osfmach3_i886
arch_compat: osfmach3_i886: i886 osfmach3_i786
arch_compat: osfmach3_i786: i786 osfmach3_i686
arch_compat: osfmach3_i686: i686 osfmach3_i586
arch_compat: osfmach3_i586: i586 osfmach3_i486
arch_compat: osfmach3_i486: i486 osfmach3_i386
arch_compat: osfmach3_i386: i486

arch_compat: osfmach3_ppc: ppc

arch_compat: usparc: sparc

Quite a bunch of stuff, isn't it? With the exception of the first five lines, which indicate where sever-
al important directories and programs are located, the remainder of this file contains rpmrc entries
that are related to RPM's architecture and operating system processing. As you might imagine, any
tinkering here will probably not be very productive, so leave any modifications here to the RPM de-
velopers.

Next, we have /etc/rpmrc.

/etc/rpmrc

The file /etc/rpmrc, unlike /usr/lib/rpmrc, is fair game for modifications and additions.
In fact, /etc/rpmrc isn't created by default, so its contents are entirely up to you. It's the perfect
place to keep rpmrc entries of a system-wide or global nature.

The vendor entry is a great example of a good candidate for inclusion in /etc/rpmrc. In most
cases, a particular system is dedicated to building packages for one vendor. In these instances, set-
ting the vendor entry in /etc/rpmrc is best.

Next in the hierarchy is a file named .rpmrc, residing in the user's login directory.

.rpmrc in the user's login directory
As you might imagine, a file called .rpmrc in a user's login directory is only going to be read by
that user when he or she runs RPM. Like /etc/rpmrc, this file is not created by default, but it can
contain the same rpmrc entries as the other files. The packager entry, which should contain the
name and contact information for the person who built the package, is an appropriate candidate for
~/.rpmrc.

File indicated by the --rcfile option
The --rcfile option is best used only when a totally different RPM configuration is desired for one or
two packages. Since the only other rpmrc file read is /usr/lib/rpmrc with its low-level de-
fault settings, the file specified with the --rcfile option will have to be more comprehensive than
either /etc/rpmrc or ~/.rmprc.

rpmrc File Syntax
As you might have surmised from the example file we briefly reviewed, the basic syntax of an rp-
mrc file entry is:

The rpmrc File

342

1 The buildostranslate rpmrc file entry is discussed on the section called “buildostranslate”.

<name>:<value>

The <name> part of the entry is not case sensitive, so any capitalization is acceptable. The colon
separating the name from its value must immediately follow the name. No spaces are allowed here.
The formatting requirements on the value side of the entry vary from value to value and will be dis-
cussed along with each entry.

rpmrc File Entries
In this section, we discuss the various entries that can be used in each of the rpmrc files.

arch_canon
The arch_canon entry is used to define a table of architecture names and their associated numbers.
These canonical architecture names and numbers are then used internally by RPM whenever archi-
tecture-specific processing takes place. This entry's format is:

arch_canon:<label>: <string> <value>

The <label> is compared against information from uname(2) after it's been translated using the
appropriate buildarchtranslate entry. If a match is found, then <string> is used by RPM to ref-
erence the system's architecture. When building a binary package, RPM uses <string> as part of
the package's filename, for instance.

The <value> is a numeric value RPM uses internally to identify the architecture. For example, this
number is written in the header of each package file so that the file command can identify the archi-
tecture for which the package was built.

os_canon
The os_canon entry is used to define a table of operating system names and their associated num-
bers. These canonical operating system names and numbers are then used internally by RPM
whenever operating system-specific processing takes place. This entry's format is:

os_canon:<label>: <string> <value>

The <label> is compared against information from uname(2) after it's been translated using the
appropriate buildostranslate entry. 1 If a match is found, then <string> is used by RPM to refer-
ence the operating system.

The <value> is a numeric value used to uniquely identify the operating system.

buildarchtranslate
The buildarchtranslate entry is used in the process of defining the architecture that RPM will use

The rpmrc File

343

as the "build" architecture. As the name implies, it is used to translate the raw information returned
from uname(2) to the canonical architecture defined by arch_canon.

The format of the buildarchtranslate entry is slightly different from most other rpmrc file entries.
Instead of the usual <name>:<value> format, the buildarchtranslate entry looks like this:

buildarchtranslate:<label>: <string>

The <label> is compared against information from uname(2). If a match is found, then
<string> is used by RPM to define the build architecture.

buildostranslate
The buildostranslate entry is used in the process of defining the operating system RPM will use as
the "build" operating system. As the name implies, it is used to translate the raw information re-
turned by uname(2) to the canonical operating system defined by os_canon.

The format of the buildostranslate entry is slightly different from most other rpmrc file entries.
Instead of the usual <name>:<value> format, the buildostranslate entry looks like this:

buildostranslate:<label>: <string>

The <label> is compared against information from uname(2). If a match is found, then
<string> is used by RPM to define the build operating system.

arch_compat
The arch_compat entry is used to define which architectures are compatible with one another. This
information is used when packages are installed; in this way, RPM can determine whether a given
package file is compatible with the system. The format of the entry is:

arch_compat:<label>: <list>

The <label> is an architecture string, as defined by an arch_canon entry. The <list> following
it consists of one or more architectures, also defined by arch_canon. If there is more than one archi-
tecture in the list, they should be separated by a space.

The architectures in the list are considered compatible to the architecture specified in the label.

os_compat
Default value: (operating system-specific)

The os_compat entry is used to define which operating systems are compatible with one another.
This information is used when packages are installed; in this way, RPM can determine whether a
given package file is compatible with the system. The format of the entry is:

The rpmrc File

344

<name>:<label>: <list>

The <label> is an operating system string, as defined by an os_canon entry. The <list> follow-
ing it consists of one or more operating systems, also defined by os_canon. If there is more than one
operating system in the list, they should be separated by a space.

The operating systems in the list are considered compatible to the operating system specified in the
label.

builddir
Default value: <topdir>/BUILD

The builddir entry is used to define the path to the directory in which RPM will build packages. Its
default value is taken from the value of the topdir entry, with "/BUILD" appended to it. Note that if
you redefine builddir, you'll need to specify a complete path.

buildroot
Default value: (none)

The buildroot entry defines the path used as the root directory during the install phase of a package
build. For more information on using build roots, please see the section called “Using Build Roots
in a Package”.

cpiobin
Default value: cpio

The cpiobin entry is used to define the name (and optionally, path) of the cpio program. RPM uses
cpio to perform a variety of functions, and needs to know where the program can be found.

dbpath
Default value: /var/lib/rpm

The dbpath entry is used to define the directory in which the RPM database files are stored. It can
be overridden by using the --dbpath option on the RPM command line.

defaultdocdir
Default value: /usr/doc

The defaultdocdir entry is used to define the directory in which RPM will store documentation for
all installed packages. It is used only during builds to support the %doc directive.

distribution
Default value: (none)

The distribution entry is used to define the distribution for each package. The distribution can also
be set by adding the distribution tag to a particular spec file. The distribution tag in the spec file
overrides the distribution rpmrc file entry.

excludedocs
Default value: 0

The rpmrc File

345

The excludedocs entry is used to control if documentation should be written to disk when a package
is installed. By default, documentation is installed; however, this can be overridden by setting the
value of excludedocs to 1. Note also that the --excludedocs and --includedocs options can be added
to the RPM command line to override the excludedocs entry's behavior. For more information on
the --excludedocs and --includedocs options, please refer to Chapter 2, Using RPM to Install Pack-
ages.

ftpport
Default value: (none)

The ftpport entry is used to define the port RPM should use when manipulating package files via
FTP. See the section called “ --ftpport <port>: Use <port> In FTP-based Installs ” for more in-
formation on how FTP ports are used by RPM.

ftpproxy
Default value: (none)

The ftpproxy entry is used to define the hostname of the FTP proxy system RPM should use when
manipulating package files via FTP. See the section called “ --ftpproxy <host>: Use <host> As
Proxy In FTP-based Installs ” for more information on how FTP proxy systems are used by RPM.

messagelevel
Default value: 3

The messagelevel entry is used to define the desired verbosity level. Levels less than 3 produce
greater amounts of output, while levels greater than 3 produce less output.

netsharedpath
Default value: (none)

The netsharedpath entry is used to define one or more paths that, on the local system, are shared
with other systems. If more than one path is specified, they must be separated with colons.

optflags
Default value: (architecture-specific)

The optflags entry is used to define a standard set of options that can be used during the build pro-
cess, specifically during compilation.

The format of the optflags entry is slightly different from most other rpmrc file entries. Instead of
the usual <name>:<value> format, the optflags entry looks like this:

optflags:<architecture> <value>

For example, assume the following optflags entries were placed in an rpmrc file:

optflags: i386 -O2 -m486 -fno-strength-reduce
optflags: sparc -O2

The rpmrc File

346

If RPM was running on an Intel 80386-compatible architecture, the optflags value would be set to -
O2 -m486 -fno-strength-reduce. If, however, RPM was running on a Sun SPARC-based system,
optflags would be set to -O2.

This entry sets the RPM_OPT_FLAGS environment variable, which can be used in the %prep,
%build, and %install scripts.

packager
Default value: (none)

The packager entry is used to define the name and contact information for the individual respons-
ible for building the package. The contact information is traditionally defined in the following
format:

packager:Erik Troan <ewt@redhat.com>

pgp_name
Default value: (none)

The pgp_name entry is used to define the name of the PGP public key that will be used to sign each
package built. The value is not case sensitive, but the key name entered here must match the actual
key name in every other aspect.

For more information on signing packages with PGP, please read Chapter 17, Adding PGP Signa-
tures to a Package.

pgp_path
Default value: (none)

The pgp_path entry is used to point to a directory containing PGP keyring files. These files will be
searched for the public key specified by the pgp_name entry.

For more information on signing packages with PGP, please read Chapter 17, Adding PGP Signa-
tures to a Package.

require_distribution
Default value: 0

The require_distribution entry is used to direct RPM to require that every package built must con-
tain distribution information. The default value directs RPM to not enforce this requirement. If the
entry has a non-zero value, RPM will only build packages that define a distribution.

require_icon
Default value: 0

The require_icon entry is used to direct RPM to require that every package built must contain an
icon. The default value directs RPM to not enforce this requirement. If the entry has a non-zero
value, RPM will only build packages that contain an icon.

The rpmrc File

347

require_vendor
Default value: 0

The require_vendor entry is used to direct RPM to require that every package built must contain
vendor information. The default value directs RPM to not enforce this requirement. If the entry has a
non-zero value, RPM will only build packages that define a vendor.

rpmdir
Default value: <topdir>/RPMS

The rpmdir entry is used to define the path to the directory in which RPM will write binary pack-
age files. Its default value is taken from the value of the topdir entry, with "/RPMS" appended to it.
Note that if you redefine rpmdir, you'll need to specify a complete path. RPM will automatically
add an architecture-specific directory to the end of the path. For example, on an Intel-based system,
the actual path would be:

/usr/src/redhat/RPMS/i386

signature
Default value: (none)

The signature entry is used to define the type of signature that is to be added to each package built.
At the present time, only signatures from PGP are supported. Therefore, the only acceptable value is
"pgp".

For more information on signing packages with PGP, please read Chapter 17, Adding PGP Signa-
tures to a Package.

sourcedir
Default value: <topdir>/SOURCES

The sourcedir entry is used to define the path to the directory in which RPM will look for sources.
Its default value is taken from the value of the topdir entry, with "/SOURCES" appended to it. Note
that if you redefine sourcedir, you'll need to specify a complete path.

specdir
Default value: <topdir>/SPECS

The specdir entry is used to define the path to the directory in which RPM will look for spec files.
Its default value is taken from the value of the topdir entry, with "/SPECS" appended to it. Note
that if you redefine specdir, you'll need to specify a complete path.

srcrpmdir
Default value: <topdir>/SRPMS

The srcrpmdir entry is used to define the path to the directory in which RPM will write source
package files. Its default value is taken from the value of the topdir entry, with "/SRPMS" appen-
ded to it. Note that if you redefine srcrpmdir, you'll need to specify a complete path.

The rpmrc File

348

timecheck
Default value: (none)

The timecheck entry is used to define the default number of seconds to apply to the --timecheck
option when building packages. For more information on the --timecheck option, please see the sec-
tion called “ --timecheck <secs> — Print a warning if files to be packaged are over <secs> old
”.

tmppath
Default value: /var/tmp

The tmpdir entry is used to define a path to the directory that RPM will use for temporary work
space. This normally consists of temporary scripts that are used during the build process. It should
be set to an absolute path (ie, starting with "/").

topdir
Default value: /usr/src/redhat

The topdir entry is used to define the path to the top-level directory in RPM's build directory tree. It
should be set to an absolute path (ie, starting with "/"). The following entries base their default val-
ues on the value of topdir:

• builddir

• rpmdir

• sourcedir

• specdir

• srcrpmdir

vendor
Default value: (none)

The vendor entry is used to define the name of the organization that is responsible for distributing
the packaged software. Normally, this would be the name of a business or other such entity.

The rpmrc File

349

Appendix C. Concise RPM Command
Reference
Global Options

The following options can be used in any of RPM's modes:

• --quiet — Print as little output as possible.

• -v — Be a little more verbose.

• -vv — Be incredibly verbose (for debugging).

• --root <dir> — Use <dir> as the top level directory.

• --dbpath <dir> — Use <dir> as the directory for the database.

• --rcfile <file> — Use <file> instead of /etc/rpmrc and $HOME/.rpmrc.

Informational Options
The following options are used to display information about RPM:

Format: rpm <option>

• --version — Print the version of rpm being used.

• --help — Print a help message.

• --showrc — Show rcfile information.

• --querytags — List the tags that can be used with --queryformat.

Query Mode
RPM's query mode is used to display information about packages:

Format: rpm --query <options>

or

Format: rpm -q <options>

Package Specification Options To Query Mode
No more than one of the following options may be present in every query command. They are used
to select the source of the information to be displayed.

• <packagename> — Query the named package.

• -a — Query all packages.

350

• -f <file>+ — Query package owning <file>.

• -g <group>+ — Query packages with group <group>.

• -p <packagefile>+ — Query (uninstalled) package <packagefile>.

• --whatprovides <i> — Query packages that provide <i> capability.

• --whatrequires <i> — Query packages that require <i> capability.

Information Selection Options To Query Mode
One or more of the following options may be added to any query command. They are used to select
what information RPM will display. If no information selection option is present on the command
line, RPM will simply display the applicable package label(s):

• -i — Display package information.

• -l — Display package file list.

• -s — Show file states (implies -l).

• -d — List only documentation files (implies -l).

• -c — List only configuration files (implies -l).

• --dump — Show all available information for each file (must be used with -l, -c, or -d).

• --provides — List capabilities that the package provides.

• --requires, -R — List capabilities that the package requires.

• --scripts — Print the various [un]install, verification scripts.

• --queryformat <s> — Use <s> as the header format (implies -i).

• --qf <s> — Shorthand for --queryformat.

Verify Mode
RPM's verification mode is used to ensure that a package is still installed properly:

Format: rpm --verify <options>

or

Format: rpm -V <options>

or

Format: rpm -y <options>

Options To Verify Mode
The following options can be used on any verify command:

• --nodeps — Do not verify package dependencies.

Concise RPM Command Reference

351

• --nofiles — Do not verify file attributes.

• --noscripts — Do not execute the package's verification script.

Install Mode
RPM's installation mode is used to install packages:

Format: rpm --install <packagefile>

or

Format: rpm -i <packagefile>

Options To Install Mode
The following options can be used on any install command:

• -h, --hash — Print hash marks as package installs (good with -v).

• --prefix <dir> — Relocate the package to <dir>, if relocatable.

• --excludedocs — Do not install documentation.

• --force — Shorthand for --replacepkgs and --replacefiles.

• --ignorearch — Do not verify package architecture.

• --ignoreos — Do not verify package operating system.

• --includedocs — Install documentation.

• --nodeps — Do not check package dependencies.

• --noscripts — Do not execute any installation scripts.

• --percent — Print percentages as package installs.

• --replacefiles — Install even if the package replaces installed files.

• --replacepkgs — Reinstall if the package is already present.

• --test — Do not install, but tell if it would work or not.

Upgrade Mode
RPM's upgrade mode is used to upgrade packages:

Format: rpm --upgrade <packagefile>

or

Format: rpm -U <packagefile>

Options To Upgrade Mode
The following options can be used on any upgrade command:

Concise RPM Command Reference

352

• -h, --hash — Print hash marks as package installs (good with -v).

• --prefix <dir> — Relocate the package to <dir>, if relocatable.

• --excludedocs — Do not install documentation.

• --force — Shorthand for --replacepkgs, --replacefiles, and --oldpackage.

• --ignorearch — Do not verify package architecture.

• --ignoreos — Do not verify package operating system.

• --includedocs — Install documentation.

• --nodeps — Do not verify package dependencies.

• --noscripts — Do not execute any installation scripts.

• --percent — Print percentages as package installs.

• --replacefiles — Install even if the package replaces installed files.

• --replacepkgs — Reinstall if the package is already present.

• --test — Do not install, but tell if it would work or not.

• --oldpackage — Upgrade to an old version of the package (--force on upgrades does this auto-
matically).

Erase Mode
RPM's erase mode is used to erase previously installed packages:

Format: rpm --erase <package>

or

Format: rpm -e <package>

Options To Erase Mode
The following options can be used on any erase command:

• --nodeps — Do not verify package dependencies.

• --noscripts — Do not execute any installation scripts.

Build Mode
RPM's build mode is used to build packages:

Format: rpmbuild -b<stage> <options> <specfile>

(Note that -vv is the default for all build mode commands.)

Build Mode Stages
One of the following stages must follow the -b option:

Concise RPM Command Reference

353

• p — Prep (unpack sources and apply patches).

• l — List check (do some cursory checks on %files).

• c — Compile (prep and compile).

• i — Install (prep, compile, install).

• b — Binary package (prep, compile, install, package).

• a — Binary/source package (prep, compile, install, package).

Options To Build Mode
The following options can be used on any build command:

• --short-circuit — Skip straight to specified stage (only for c and i).

• --clean — Remove build tree when done.

• --sign — Generate PGP signature.

• --buildroot <s> — Use <s> as the build root.

• --buildarch <s> — Use <s> as the build architecture.

• --buildos <s> — Use <s> as the build operating system.

• --test — Do not execute any stages.

• --timecheck <s> — Set the time check to <s> seconds (0 disables it).

Rebuild Mode
RPM's rebuild mode is used to rebuild packages from a source package file. The source archives,
patches, and icons that comprise the source package are removed after the binary package is built.
Rebuild mode implies --clean.

Format: rpm --rebuild <options> <source-package>

(Note that -vv is the default for all rebuild mode commands.)

Options To Rebuild Mode
Only the global options may be used.

Recompile Mode
RPM's recompile mode is used to recompile software from a source package file. Unlike --rebuild,
no binary package is created.

Format: rpm --recompile <options> <source-package>

(Note that -vv is the default for all recompile mode commands.)

Options To Recompile Mode

Concise RPM Command Reference

354

Only the global options may be used.

Resign Mode
RPM's resign mode is used to replace a package's signature with a new one:

Format: rpm --resign <options> <packagefile>+

Options To Resign Mode
Only the global options may be used.

Add Signature Mode
RPM's add signature mode is used to add a signature to a package:

Format: rpm --addsign <options> <packagefile>+

Options To Add Signature Mode
Only the global options may be used.

Check Signature Mode
RPM's check signature mode is used to verify a package's signature:

Format: rpm --checksig <options> <packagefile>+

or

Format: rpm -K <options> <packagefile>+

Options To Check Signature Mode
The following option can be used on any check signature command:

• --nopgp — Skip any PGP signatures (size and MD5 only).

Initialize Database Mode
RPM's initialize database mode is used to create a new RPM database:

Format: rpm --initdb <options>

Options to Initialize database Mode
Only the global options may be used.

Rebuild Database Mode
RPM's rebuild database mode is used to rebuild an RPM database:

Format: rpm --rebuilddb <options>

Concise RPM Command Reference

355

Options to Rebuild Database Mode
Only the global options may be used.

Concise RPM Command Reference

356

Appendix D. Available Tags For
--queryformat

The following tags were defined at the time this book was written. For the latest list of available
queryformat tags, please issue the following command:

rpm --querytags

Keep in mind that the list of tags produced by the --querytags option is the complete list of all tags
used by RPM internally; for instance, during package builds. Because of this, some tags do not pro-
duce meaningful output when used in a --queryformat format string.

List of --queryformat Tags
For every tag in this section, there can be as many as three different pieces of information:

1. A short description of the tag.

2. Whether the data specified by the tag is an array, and if so, how many members are present in
the array.

3. What modifiers can be used with the tag.

The NAME Tag
The NAME tag is used to display the name of the package.

Array: No

Used with modifiers: N/A

The VERSION Tag
The VERSION tag is used to display the version of the packaged software.

Array: No

Used with modifiers: N/A

The RELEASE Tag
The RELEASE tag is used to display the release number of the package.

Array: No

Used with modifiers: N/A

The EPOCH Tag
The EPOCH tag is used to display the epoch number of the package.

Array: No

357

Used with modifiers: N/A

The SUMMARY Tag
The SUMMARY tag is used to display a one-line summation of the packaged software.

Array: No

Used with modifiers: N/A

The DESCRIPTION Tag
The DESCRIPTION tag is used to display a detailed summation of the packaged software.

Array: No

Used with modifiers: N/A

The BUILDTIME Tag
The BUILDTIME tag is used to display the time and date the package was created.

Array: No

Used with modifiers: :date

The BUILDHOST Tag
The BUILDHOST tag is used to display the hostname of the system that built the package.

Array: No

Used with modifiers: N/A

The INSTALLTIME Tag
The INSTALLTIME tag is used to display the time and date the package was installed.

Array: No

Used with modifiers: :date

The SIZE Tag
The SIZE tag is used to display the total size, in bytes, of every file installed by this package.

Array: No

Used with modifiers: N/A

The DISTRIBUTION Tag
The DISTRIBUTION tag is used to display the distribution this package is a part of.

Array: No

Used with modifiers: N/A

Available Tags For --queryformat

358

The VENDOR Tag
The VENDOR tag is used to display the organization responsible for marketing the package.

Array: No

Used with modifiers: N/A

The GIF Tag
The GIF tag is not available for use with --queryformat.

The XPM Tag
The XPM tag is not available for use with --queryformat.

The LICENSE Tag
The LICENSE tag is used to display the distribution license of the package.

Array: No

Used with modifiers: N/A

The PACKAGER Tag
The PACKAGER tag is used to display the person or persons responsible for creating the package.

Array: No

Used with modifiers: N/A

The GROUP Tag
The GROUP tag is used to display the group to which the package belongs.

Array: No

Used with modifiers: N/A

The CHANGELOG Tag
The CHANGELOG tag is reserved for a future version of RPM.

The SOURCE Tag
The SOURCE tag is used to display the source archives contained in the source package file.

Array: Yes (Size: One entry per source)

Used with modifiers: N/A

The PATCH Tag
The PATCH tag is used to display the patch files contained in the source package file.

Array: Yes (Size: One entry per patch)

Used with modifiers: N/A

Available Tags For --queryformat

359

The URL Tag
The URL tag is used to display the Uniform Resource Locator that points to additional information
on the packaged software.

Array: No

Used with modifiers: N/A

The OS Tag
The OS tag is used to display the operating system for which the package was built.

Array: No

Used with modifiers: N/A

The ARCH Tag
The ARCH tag is used to display the architecture for which the package was built.

Array: No

Used with modifiers: N/A

The PREIN Tag
The PREIN tag is used to display the package's pre-install script.

Array: No

Used with modifiers: N/A

The POSTIN Tag
The POSTIN tag is used to display the package's post-install script.

Array: No

Used with modifiers: N/A

The PREUN Tag
The PREUN tag is used to display the package's pre-uninstall script.

Array: No

Used with modifiers: N/A

The POSTUN Tag
The POSTUN tag is used to display the package's post-uninstall script.

Array: No

Used with modifiers: N/A

The FILENAMES Tag

Available Tags For --queryformat

360

1 Since there is no modifier to display the file states in human-readable form, it will be necessary to manually interpret the flag values, based
on the RPMFILE_STATE_xxx #defines contained in rpmlib.h. This file is part of the rpm-devel package and is also present in the
RPM source package.

The FILENAMES tag is used to display the names of the files that comprise the package.

Array: Yes (Size: One entry per filenames)

Used with modifiers: N/A

The FILESIZES Tag
The FILESIZES tag is used to display the size, in bytes, of each of the files that comprise the pack-
age.

Array: Yes (Size: One entry per filesizes)

Used with modifiers: N/A

The FILESTATES Tag
The FILESTATES tag is used to display the state of each of the files that comprise the package.

Array: Yes (Size: One entry per filestates)

Used with modifiers: N/A 1

The FILEMODES Tag
The FILEMODES tag is used to display the permissions of each of the files that comprise the pack-
age.

Array: Yes (Size: One entry per filemodes)

Used with modifiers: :perms

The FILEUIDS Tag
The FILEUIDS tag is used to display the user ID, in numeric form, of each of the files that com-
prise the package.

Array: Yes (Size: One entry per fileuids)

Used with modifiers: N/A

The FILEGIDS Tag
The FILEGIDS tag is used to display the group ID, in numeric form, of each of the files that com-
prise the package.

Array: Yes (Size: One entry per filegids)

Used with modifiers: N/A

The FILERDEVS Tag
The FILERDEVS tag is used to display the major and minor numbers for each of the files that
comprise the package. It will only be non-zero for device special files.

Array: Yes (Size: One entry per filerdevs)

Available Tags For --queryformat

361

Used with modifiers: N/A

The FILEMTIMES Tag
The FILEMTIMES tag is used to display the modification time and date for each of the files that
comprise the package.

Array: Yes (Size: One entry per filemtimes)

Used with modifiers: :date

The FILEMD5S Tag
The FILEMD5S tag is used to display the MD5 checksum for each of the files that comprise the
package.

Array: Yes (Size: One entry per filemd5s)

Used with modifiers: N/A

The FILELINKTOS Tag
The FILELINKTOS tag is used to display the link string for symlinks.

Array: Yes (Size: One entry per filelinktos)

Used with modifiers: N/A

The FILEFLAGS Tag
The FILEFLAGS tag is used to indicate whether the files that comprise the package have been
flagged as being documentation or configuration.

Array: Yes (Size: One entry per fileflags)

Used with modifiers: :fflags

The ROOT Tag
The ROOT tag is not available for use with --queryformat.

The FILEUSERNAME Tag
The FILEUSERNAME tag is used to display the owner, in alphanumeric form, of each of the files
that comprise the package.

Array: No

Used with modifiers: N/A

The FILEGROUPNAME Tag
The FILEGROUPNAME tag is used to display the group, in alphanumeric form, of each of the
files that comprise the package.

Array: Yes (Size: One entry per filegroupname)

Used with modifiers: N/A

Available Tags For --queryformat

362

2 Since there is no modifier to display the verification flags in human-readable form, it will be necessary to manually interpret the flag val-
ues, based on the RPMVERIFY_xxx #defines contained in rpmlib.h. This file is part of the rpm-devel package and is also present in
the RPM source package.

The EXCLUDE Tag
The EXCLUDE tag is deprecated and should no longer be used.

The EXCLUSIVE Tag
The EXCLUSIVE tag is deprecated and should no longer be used.

The ICON Tag
The ICON tag is not available for use with --queryformat.

The SOURCERPM Tag
The SOURCERPM tag is used to display the name of the source package from which this binary
package was built.

Array: No

Used with modifiers: N/A

The FILEVERIFYFLAGS Tag
The FILEVERIFYFLAGS tag is used to display the numeric value of the file verification flags for
each of the files that comprise the package.

Array: Yes (Size: One entry per fileverifyflags)

Used with modifiers: N/A 2

The ARCHIVESIZE Tag
The ARCHIVESIZE tag is used to display the size, in bytes, of the archive portion of the original
package file.

Array: No

Used with modifiers: N/A

The PROVIDES Tag
The PROVIDES tag is used to display the capabilities the package provides.

Array: Yes (Size: One entry per provides)

Used with modifiers: N/A

The REQUIREFLAGS Tag
The REQUIREFLAGS tag is used to display the requirement flags for each capability the package
requires.

Array: Yes (Size: One entry per requireflags)

Used with modifiers: :depflags

Available Tags For --queryformat

363

The REQUIRENAME Tag
The REQUIRENAME tag is used to display the capabilities the package requires.

Array: Yes (Size: One entry per requirename)

Used with modifiers: N/A

The REQUIREVERSION Tag
The REQUIREVERSION tag is used to display the version-related aspect of each capability the
package requires.

Array: Yes (Size: One entry per requireversion)

Used with modifiers: N/A

The NOSOURCE Tag
The NOSOURCE tag is used to display the source archives that are not contained in the source
package file.

Array: Yes (Size: One entry per nosource)

Used with modifiers: N/A

The NOPATCH Tag
The NOPATCH tag is used to display the patch files that are not contained in the source package
file.

Array: Yes (Size: One entry per nopatch)

Used with modifiers: N/A

The CONFLICTFLAGS Tag
The CONFLICTFLAGS tag is used to display the conflict flags for each capability the package
conflicts with.

Array: Yes (Size: One entry per conflictflags)

Used with modifiers: :depflags

The CONFLICTNAME Tag
The CONFLICTNAME tag is used to display the capabilities that the package conflicts with.

Array: Yes (Size: One entry per conflictname)

Used with modifiers: N/A

The CONFLICTVERSION Tag
The CONFLICTVERSION tag is used to display the version-related aspect of each capability the
package conflicts with.

Array: Yes (Size: One entry per conflictversion)

Used with modifiers: N/A

Available Tags For --queryformat

364

The DEFAULTPREFIX Tag
The DEFAULTPREFIX tag is used to display the path that will, by default, be used to install a re-
locatable package.

Array: No

Used with modifiers: N/A

The BUILDROOT Tag
The BUILDROOT tag is not available for use with --queryformat.

The INSTALLPREFIX Tag
The INSTALLPREFIX tag is used to display the actual path used when a relocatable package was
installed.

Array: No

Used with modifiers: N/A

The EXCLUDEARCH Tag
The EXCLUDEARCH tag is used to display the architectures that should not install this package.

Array: Yes (Size: One entry per excludearch)

Used with modifiers: N/A

The EXCLUDEOS Tag
The EXCLUDEOS tag is used to display the operating systems that should not install this package.

Array: Yes (Size: One entry per excludeos)

Used with modifiers: N/A

The EXCLUSIVEARCH Tag
The EXCLUSIVEARCH tag is used to display the architectures that are the only ones that should
install this package.

Array: Yes (Size: One entry per exclusivearch)

Used with modifiers: N/A

The EXCLUSIVEOS Tag
The EXCLUSIVEOS tag is used to display the operating systems that are the only one that should
install this package.

Array: Yes (Size: One entry per exclusiveos)

Used with modifiers: N/A

The AUTOREQPROV, AUTOREQ, and AUTOPROV
Tags

Available Tags For --queryformat

365

The AUTOREQPROV, AUTOREQ, and AUTOPROV tags are not available for use with -
-queryformat.

The RPMVERSION Tag
The RPMVERSION tag is used to display the version of RPM that was used to build the package.

Array: No

Used with modifiers: N/A

The TRIGGERSCRIPTS Tag
The TRIGGERSCRIPTS tag is reserved for a future version of RPM.

The TRIGGERNAME Tag
The TRIGGERNAME tag is reserved for a future version of RPM.

The TRIGGERVERSION Tag
The TRIGGERVERSION tag is reserved for a future version of RPM.

The TRIGGERFLAGS Tag
The TRIGGERFLAGS tag is reserved for a future version of RPM.

The TRIGGERINDEX Tag
The TRIGGERINDEX tag is reserved for a future version of RPM.

The VERIFYSCRIPT Tag
The VERIFYSCRIPT tag is used to display the script to be used for package verification.

Array: No

Used with modifiers: N/A

Available Tags For --queryformat

366

Appendix E. Concise Spec File
Reference
Comments

Comments are a way to make RPM ignore a line in the spec file. To create a comment, enter an oc-
tothorp (#) at the start of the line. Any text following the comment character will be ignored by
RPM:

This is the spec file for playmidi 2.3...

Comments can be placed in any section of the spec file. Note that macros are expanded everywhere,
so that with multiline macros which would only have the first line commented also escape the per-
cent (%) character:

%%configure

See also: the section called “Comments: Notes Ignored by RPM”.

The Preamble
This section outlines the tags that comprise a spec file's preamble.

Package Naming Tags
This section outlines the tags that are used to name a package.

The Name: Tag

The Name: tag is used to define the name of the software being packaged.

Name: cdplayer

See also: the section called “The name Tag”.

The Version: Tag

The Version: tag defines the version of the software being packaged.

Version: 1.2

367

See also: the section called “The version Tag”.

The Release: Tag

The Release: tag can be thought of as the package's version.

Release: 5

See also: the section called “The release Tag”.

Descriptive Tags

%description Directive -- Describe the packages intended use.

The %description tag is used to define an in-depth description of the packaged software. In the de-
scriptive text, a space in the first column indicates that that line of text should be presented to user
as-is, with no formatting done by RPM. Blank lines in the descriptive text denote paragraphs.

%description
It slices!
It dices!
It's a CD player app that can't be beat.

By using the resonant frequency of the CD itself, it is able to simulate
20X oversampling. This leads to sound quality that cannot be equaled with
more mundane software...

The %description tag can be made specific to a particular subpackage by adding the subpackage
name, and optionally, the -n option:

%description bar

%description -n bar

The subpackage name and usage of the -n option must match those defined with the %package
directive.

See also: the section called “The %description Tag”.

The Summary: Tag

The Summary: tag is used to define a one-line description of the packaged software.

Summary: A CD player app that rocks!

Concise Spec File Reference

368

See also: the section called “The summary Tag”.

The License: Tag

The License: tag is used to define the license terms applicable to the software being packaged. This
tag is also known as the Copyright: tag.

License: GPL

See also: the section called “The license Tag”.

The Distribution: Tag

The Distribution: tag is used to define a group of packages, of which this package is a part.

Distribution: Doors '95

See also: the section called “The distribution Tag”.

The Icon: Tag

The Icon: tag is used to name a file containing an icon representing the packaged software. The file
may be in either GIF or XPM format, although XPM is preferred. In either case, the background of
the icon should be transparent.

Icon: foo.xpm

See also: the section called “The icon Tag”.

The Vendor: Tag

The Vendor: tag is used to define the name of the entity that is responsible for packaging the soft-
ware.

Vendor: White Socks Software, Inc.

See also: the section called “The vendor Tag”.

The URL: Tag

The URL: tag is used to define a Uniform Resource Locator that can be used to obtain additional in-
formation about the packaged software.

Concise Spec File Reference

369

URL: http://www.gnomovision.com/cdplayer.html

See also: the section called “The url Tag”.

The Group: Tag

The Group: tag is used to group packages together by the types of functionality they provide.

Group: Applications/Editors

See also: the section called “The group Tag”.

The Packager: Tag

The Packager: tag is used to hold the name and contact information for the person or persons who
built the package.

Packager: Fred Foonly <fred@gnomovision.com>

See also: the section called “The packager Tag”.

Dependency Tags

The Provides: Tag

The Provides: tag is used to specify a "virtual package" that the packaged software makes available
when it is installed.

Provides: module-info

See also: the section called “The provides Tag”.

The Requires: Tag

The Requires: tag is used to alert RPM to the fact that the package needs to have certain capabilities
available in order to operate properly.

Requires: playmidi

A version may be specified, following the package specification. The following comparison operat-

Concise Spec File Reference

370

ors may be placed between the package and version:

<, >, =, >=, or <=

Requires: playmidi >= 2.3

If the Requires: tag needs to perform a comparison against an epoch numbered defined with the
Epoch: tag, then the proper format would be:

Requires: playmidi >= 4:2.3

See also: the section called “The requires Tag”.

The Epoch: Tag

The Epoch: tag is used to define an epoch number for a package. It replaces the now obsoleted
Serial: tag. This is only necessary if RPM is unable to determine the ordering of a package's version
numbers.

Epoch: 4

See also: the section called “The epoch Tag”.

The Conflicts: Tag

The Conflicts: tag is used to alert RPM to the fact that the package is not compatible with other
packages.

Conflicts: playmidi

A version may be specified, following the package specification. The following comparison operat-
ors may be placed between the package and version:

<, >, =, >=, or <=

Concise Spec File Reference

371

Conflicts: playmidi >= 2.3

If the Conflicts: tag needs to perform a comparison against an epoch numbered defined with the
Epoch: tag, then the proper format would be:

Conflicts: playmidi = 4:

See also: the section called “The conflicts Tag”.

The AutoReqProv:, AutoReq:, and AutoProv: Tags

The AutoReqProv: tag is used to control the automatic dependency processing performed when the
package is being built. To disable automatic dependency processing, add the following line:

AutoReqProv: no

(The number 0 may be used instead of no) Although RPM defaults to performing automatic de-
pendency processing, the effect of the AutoReqProv: tag can be reversed by changing no to yes.
(The number 1 may be used instead of yes)

The AutoReq: and AutoProv: tags can be used to disable automatic processing of requirements or
"provides" only, respectively.

See also: the section called “The autoreqprov, autoreq, and autoprov Tags”.

Architecture- and Operating System-Specific Tags

The ExcludeArch: Tag

The ExcludeArch: tag is used to direct RPM to ensure that the package does not attempt to build on
the excluded architecture(s).

ExcludeArch: sparc alpha

See also: the section called “The excludearch Tag”.

The ExclusiveArch: Tag

The ExclusiveArch: tag is used to direct RPM to ensure the package is only built on the specified
architecture(s).

Concise Spec File Reference

372

ExclusiveArch: sparc alpha

See also: the section called “The exclusivearch Tag”.

The ExcludeOs: Tag

The ExcludeOs: tag is used to direct RPM to ensure that the package does not attempt to build on
the excluded operating system(s).

ExcludeOS: linux irix

See also: the section called “The excludeos Tag”.

The ExclusiveOs: Tag

The ExclusiveOs: tag is used to denote which operating system(s) should only be be permitted to
build the package.

ExclusiveOS: linux

See also: the section called “The exclusiveos Tag”.

Directory-related Tags

The Prefix: Tag

The Prefix: tag is used to define part of the path RPM will use when installing the package's files.
The prefix can be redefined by the user when the package is installed, thereby changing where the
package is installed.

Prefix: /opt

See also: the section called “The prefix Tag”.

The BuildRoot: Tag

The BuildRoot: tag is used to define an alternate build root, where the software will be installed
during the build process.

BuildRoot: /tmp/cdplayer

See also: the section called “The buildroot Tag”.

Concise Spec File Reference

373

Source and Patch Tags

The Source: Tag

The Source: tag is used to define the filename of the sources to be packaged. When there is more
than one Source: tag in a spec file, each one must be numbered so they are unique, starting with the
number 0. When there is only one tag, it does not need to be numbered.

By convention, the source filename is usually preceded by a URL pointing to the location of the ori-
ginal sources, but RPM does not require this.

Source0: ftp://ftp.gnomovision.com/pub/cdplayer-1.0.tgz
Source1: foo.tgz

See also: the section called “The source Tag”.

The NoSource: Tag

The NoSource: tag is used to alert RPM to the fact that one or more source files should be excluded
from the source package file. The tag is followed by one or more numbers. The numbers correspond
to the numbers following the Source: tags that are to be excluded from packaging.

NoSource: 0, 3

See also: the section called “The nosource Tag”.

The Patch: Tag

The Patch: tag is used to define the name of a patch file to be applied to the package's sources.
When there is more than one Patch: tag in a spec file, each one must be numbered so they are
unique, starting with the number 0. When there is only one tag, it does not need to be numbered.

Patch: cdp-0.33-fsstnd.patch

See also: the section called “The patch Tag”.

The NoPatch: Tag

The NoPatch: tag is used to alert RPM to the fact that one or more patch files should be excluded
from the source package file. The tag is followed by one or more numbers. The numbers correspond
to the numbers following the Patch: tags that are to be excluded from packaging.

NoPatch: 2 3

Concise Spec File Reference

374

See also: the section called “The nopatch Tag”.

Scriptlets
This section lists the various scriptlets found in a spec file.

Build Scriptlets
Every build scriptlet has the following environment variables defined:

• RPM_SOURCE_DIR

• RPM_BUILD_DIR

• RPM_DOC_DIR

• RPM_OPT_FLAGS

• RPM_ARCH

• RPM_OS

• RPM_ROOT_DIR

• RPM_BUILD_ROOT

• RPM_PACKAGE_NAME

• RPM_PACKAGE_VERSION

• RPM_PACKAGE_RELEASE

For more information on these environment variables, and build scriptlets in general, please see the
section called “Build-time Scripts”.

%prep Directive -- Unpack archives and apply patches.

The %prep scriptlet is executed first during a build, The scriptlet normally prepares the contents of
a source package for building, usually by unpacking archives and applying patches. The scriptlet can
contain any valid sh commands.

%prep

See also: the section called “The %prep Script”.

%build Directive -- Configure and compile components to be
packaged.

The %build scriptlet is the second scriptlet executed during a build, immediately after %prep. The
scriptlet normally builds the components to be included in a binary package, usually by configuring
and compiling source code from the previously unpacked and patched archives. The scriptlet can
contain any valid sh commands.

Concise Spec File Reference

375

%build

See also: the section called “The %build Script”.

%install Directive -- Install components to be packaged.

The %install scriptlet is the third scriptlet executed during a build, immediately after %build. The
scriptlet normally installs components to be included in a binary package, usually by copying files
from the build directory tree to an install directory tree. The scriptlet can contain any valid sh com-
mands.

%install

See also: the section called “The %install Script”.

%check Directive -- Run included tests.

The %check scriptlet is the fourth scriptlet executed during a build, immediately after %install.
The scriptlet normally runs the test suite for the built components if one is available. The scriptlet
can contain any valid sh commands.

%check

See also: the section called “The %check Script”.

%clean Directive -- Remove build components.

The %clean scriptlet is executed at the end of a build. The scriptlet cleans up files produced during
a build, usually by removing the install directory tree. The scriptlet can contain any valid sh com-
mands.

%clean

See also: the section called “The %clean Script”.

Install/Erase Scriptlets
These scriptlets are executed whenever the package is installed or erased. Each scriptlet can contain
any valid sh commands.

Note: Each of the following scriptlet can be made specific to a particular subpackage by adding the
subpackage name, and optionally, the -n option:

%post bar

Concise Spec File Reference

376

%preun -n bar

The subpackage name and usage of the -n option must match those defined with the %package
directive.

Each scriptlet has the following environment variable defined:

• RPM_INSTALL_PREFIX

For more information on this environment variable please see the section called “Install/Erase-time
Scripts”.

The %pre Script

The %pre scriptlet executes just before the package is to be installed.

%pre

See also: the section called “The %pre Script”.

The %post Script

The %post scriptlet executes just after the package is to be installed.

%post

See also: the section called “The %post Script”.

The %preun Script

The %preun scriptlet executes just before the package is to be erased.

%preun

See also: the section called “The %preun Script”.

%postun Directive

The %postun scriptlet executes just after the package is to be erased.

%postun

Concise Spec File Reference

377

See also: the section called “The %postun Script”.

%verifyscript Directive
This section describes the verification script.

The %verifyscript Script

The %verifyscript scriptlet executes whenever the package is verified using RPM's -V option. The
scriptlet can contain any valid sh commands.

See also: the section called “ Verification-Time Script — The %verifyscript Script ”.

Macros
This section describes the various macros used by RPM.

The %setup Macro
The %setup macro is used to unpack the original sources in preparation for the build. It is used in
the %prep script:

%prep
%setup

See also: the section called “The %setup Macro”.

The -n <name> Option

The -n option is used to set the name of the software's build directory. This is necessary only when
the source archive unpacks into a directory named other than <name>- <version>.

%setup -n cd-player

See also: the section called “ -n <name> — Set Name of Build Directory ”.

The -q Option

The -q option is used to direct %setup to quiet its output. Verbose file listings won't be displayed
when unpacking archives with this option.

%setup -c

See also: the section called “ -c — Create Directory (and change to it) Before Unpacking ”.

The -c Option

Concise Spec File Reference

378

The -c option is used to direct %setup to create the top-level build directory before unpacking the
sources.

%setup -c

See also: the section called “ -c — Create Directory (and change to it) Before Unpacking ”.

The -D Option

The -D option is used to direct %setup to not delete the build directory prior to unpacking the
sources. This option is used when more than one source archive is to be unpacked into the build dir-
ectory, normally with the -b or -a options.

%setup -D -T -b 3

See also: the section called “ -D — Do Not Delete Directory Before Unpacking Sources ”.

The -T Option

The -T option is used to direct %setup to not perform the default unpacking of the source archive
specified by the first Source: tag. It is used with the -a or -b options.

%setup -D -T -a 1

See also: the section called “ -T — Do Not Perform Default Archive Unpacking ”.

The -b <n> Option

The -b option is used to direct %setup to unpack the source archive specified on the nth Source:
tag line before changing directory into the build directory.

%setup -D -T -b 2

See also: the section called “ -b <n> — Unpack The nth Sources Before Changing Directory ”.

The -a <n> Option

The -a option is used to direct %setup to unpack the source archive specified on the nth Source:
tag line after changing directory into the build directory.

%setup -D -T -a 5

Concise Spec File Reference

379

See also: the section called “ -a <n> — Unpack The nth Sources After Changing Directory ”.

The %patch Macro
The %patch macro, as its name implies, is used to apply patches to the unpacked sources. With no
additional options specified, it will apply the patch file specified by the Patch: (or Patch0:) tag.

%patch

When there is more than one Patch: tag line in a spec file, they can be specified by appending the
number of the Patch: tag to the %patch macro name itself.

%patch2

See also: the section called “The %patch Macro”.

The -P <n> Option

The -P option is another method of applying a specific patch. The number from the Patch: tag fol-
lows the -P option. The following %patch macros both apply the patch specified on the Patch2:
tag line:

%patch -P 2

%patch2

See also: the section called “Specifying Which patch Tag to Use”.

The -p<#> Option

The -p option is sent directly to the patch command. It is followed by a number which specifies the
number of leading slashes (and the directories in between) to strip from any filenames present in the
patch file.

%patch -p2

See also: the section called “ -p <#> — Strip <#> leading slashes and directories from patch file-
names ”.

The -b <name> Option

When the patch command is used to apply a patch, unmodified copies of the files patched are re-

Concise Spec File Reference

380

named to end with the extension .orig. The -b option is used to change the extension used by
patch.

%patch -b .fsstnd

See also: the section called “ -b <name> — Set the backup file extension to <name> ”.

The %patch -E Option

The -E option is sent directly to the patch command. It is used to direct patch to remove any empty
files after the patches have been applied.

See also: the section called “-E — Remove Empty Output Files”.

The %files List
The %files list indicates which files on the build system are to be packaged. The list consists of one
file per line. If a directory is specified, by default all files and subdirectories will be packaged.

%files
/etc/foo.conf
/sbin/foo
/usr/bin/foocmd

The %files list can be made specific to a particular subpackage by adding the subpackage name, and
optionally, the -n option:

%files bar

%files -n bar

The subpackage name and usage of the -n option must match those defined with the %package
directive.

The %files list can also use the contents of a file as the list of files to be packaged. This is done by
using the -f option, which is then followed by a filename:

%files -f files.list

See also: the section called “The %files List”.

Directives For the %files list
This section lists the various directives used in the %files lists.

Concise Spec File Reference

381

File-related Directives
This section lists those directives that are related to files.

The %doc Directive

The %doc directive flags the filename(s) that follow as being documentation.

%doc README

See also: the section called “The %doc Directive”.

The %config Directive

The %config directive is used to flag the specified file as being a configuration file.

%config /etc/fstab

See also: the section called “The %config Directive”.

The %attr Directive

The %attr directive is used to permit RPM to directly control a file's permissions and ownership. It
is normally used when non-root users build packages. The %attr directive has the following format:

%attr(<mode>, <user>, <group>) file

The user and group identifiers must be non-numeric. Attributes that do not need to be set by %attr
may be replaced with a dash:

%attr(755, root, -) foo.bar

See also: the section called “The %attr Directive”.

The %attr Directive

The %defattr sets default %attr for RPM.

The %defattr directive has the following format:

%attr(<file mode>, <user>, <group>, <dir mode>)

Concise Spec File Reference

382

The user and group identifiers must be non-numeric. Attributes that do not need to be set by
%defattr may be replaced with a dash. Directory mode may be ommited:

%defattr(644, root, root, -)

See also: the section called “The %defattr Directive”.

The %verify Directive

The %verify directive is used to control which of nine different file attributes are to be verified by
RPM. The attributes are:

1. owner — The file's owner.

2. group — The file's group.

3. mode — The file's mode.

4. md5 — The file's MD5 checksum.

5. size — The file's size.

6. maj — The file's major number.

7. min — The file's minor number.

8. symlink — The file's symbolic link string.

9. mtime — The file's modification time.

If the keyword not precedes the list, every attribute except those listed will be verified.

%verify(mode md5 size maj min symlink mtime) /dev/ttyS0

See also: the section called “The %verify Directive”.

Directory-related Directives

The %docdir Directive

The %docdir directive is used to add the specified directory to RPM's internal list of directories
containing documentation. When a directory is added to this list, every file packaged in this direct-
ory (and any subdirectories) will automatically be marked as documentation.

See also: the section called “The %docdir Directive”.

The %dir Directive

The %dir directive is used to direct RPM to package only the directory itself, regardless of what
files may reside in the directory at the time the package is created.

Concise Spec File Reference

383

%dir /usr/blather

See also: the section called “The %dir Directive”.

%package Directive
The %package directive is used to control the creation of subpackages. The subpackage name is de-
rived from the first Name: tag in the spec file, followed by the name specified after the %package
directive. Therefore, if the first Name: tag is:

Name: foo

and a subpackage is defined with the following %package directive:

%package bar

the subpackage name will be foo-bar.

See also: the section called “The Lone Directive: %package”.

The %package -n Option
The -n option is used to change how RPM derives the subpackage name. When the -n option is
used, the name following the %package directive becomes the complete subpackage name. There-
fore, if a subpackage is defined with the following %package directive:

%package -n bar

the subpackage name will be bar.

See also: the section called “ -n <string> — Use <string> As the Entire Subpackage Name ”.

Conditionals
The %ifxxx conditionals are used to begin a section of the spec file that is specific to a particular
architecture or operating system. They are followed by one or more architecture or operating system
specifiers, each separated by commas or whitespace.

Conditionals may be nested within other conditionals, provided that the inner conditional is com-
pletely enclosed by the outer conditional.

The %ifarch Conditional

Concise Spec File Reference

384

If the build system's architecture is specified, the part of the spec file following the %ifarch, but be-
fore a %else or %endif will be used during the build.

%ifarch i386 sparc

See also: the section called “The %ifarch Conditional”.

The %ifnarch Conditional
If the build system's architecture is specified, the part of the spec file following the %ifarch but be-
fore a %else or %endif will not be used during the build.

%ifnarch i386 sparc

See also: the section called “The %ifnarch Conditional”.

The %ifos Conditional
If the build system is running one of the specified operating systems, the part of the spec file follow-
ing the %ifos but before a %else or %endif will be used during the build.

%ifos linux

See also: the section called “The %ifos Conditional”.

The %ifnos Conditional
If the build system is running one of the specified operating systems, the part of the spec file follow-
ing the %ifnos but before a %else or %endif will not be used during the build.

%ifnos linux

See also: the section called “The %ifnos Conditional”.

The %else Conditional
The %else conditional is placed between a %if conditional of some persuasion, and an %endif. It
is used to create two blocks of spec file statements, only one of which will be used in any given
case.

%ifarch alpha

Concise Spec File Reference

385

make RPM_OPT_FLAGS="$RPM_OPT_FLAGS -I ."
%else
make RPM_OPT_FLAGS="$RPM_OPT_FLAGS"
%endif

See also: the section called “The %else Conditional”.

The %endif Conditional
An %endif is used to end a conditional block of spec file statements. The %endif is always needed
after a conditional, otherwise, the build will fail.

%ifarch i386
make INTELFLAG=-DINTEL
%endif

See also: the section called “The %endif Conditional”.

Concise Spec File Reference

386

Appendix F. RPM-related Resources
There are a number of resources available to help you with RPM, over and above the RPM man
page, and this book. Here are some pointers to them.

Where to Get RPM
Perhaps before asking, Where can I get RPM? it might be better to see if RPM is already installed
on your system. If you have Red Hat Linux on your system, it's there already. But be sure to check
on other systems — people are porting RPM to different systems every day, and it just might be
there waiting for you.

Here's a quick way to see if RPM is installed on your system:

% rpm --version

RPM version 4.2

%

If this command doesn't work, it might be that your path doesn't include the directory where RPM
resides. Check the usual "binary" directories before declaring RPM a no-show!

FTP Sites
If you can't find RPM on your system, you'll have to grab a copy by FTP. RPM can be found at
ftp.rpm.org. It is no longer available from ftp.redhat.com since version 2.5.1.

What Do I Need?
Once you find a nearby site with RPM, and have found the directory where it's kept, you'll notice a
variety of files, all starting with "rpm". What are they? Which ones do you need? Here's a represent-
ative list, along with the ways in which each file would be used:

ftp> ls

227 Entering Passive Mode (66,187,233,245,39,44)
150 Here comes the directory listing.
-rw-r--r-- 1 2369 300 79155 Sep 17 21:17 popt-1.7-8x.alpha.rpm
-rw-r--r-- 1 2369 300 69704 Sep 17 21:17 popt-1.7-8x.i386.rpm
-rw-r--r-- 1 2369 300 88284 Sep 17 21:17 popt-1.7-8x.ia64.rpm
-rw-rw-r-- 1 2369 300 574549 Sep 17 20:57 popt-1.7.tar.gz
-rw-r--r-- 1 2369 300 2647153 Sep 17 21:17 rpm-4.1-8x.alpha.rpm
-rw-r--r-- 1 2369 300 2222224 Sep 17 21:17 rpm-4.1-8x.i386.rpm
-rw-r--r-- 1 2369 300 3390500 Sep 17 21:17 rpm-4.1-8x.ia64.rpm
-rw-r--r-- 1 2369 300 6469152 Sep 17 21:17 rpm-4.1-8x.src.rpm
-rw-rw-r-- 1 2369 300 5670825 Sep 17 20:55 rpm-4.1.i386.tar.gz
-rw-rw-r-- 1 2369 300 6494145 Sep 17 19:38 rpm-4.1.tar.gz
-rw-r--r-- 1 2369 300 83884 Sep 17 21:17 rpm-build-4.1-8x.alpha.rpm
-rw-r--r-- 1 2369 300 79365 Sep 17 21:17 rpm-build-4.1-8x.i386.rpm
-rw-r--r-- 1 2369 300 95701 Sep 17 21:17 rpm-build-4.1-8x.ia64.rpm
-rw-r--r-- 1 2369 300 3798135 Sep 17 21:17 rpm-devel-4.1-8x.alpha.rpm
-rw-r--r-- 1 2369 300 3259143 Sep 17 21:17 rpm-devel-4.1-8x.i386.rpm
-rw-r--r-- 1 2369 300 3978604 Sep 17 21:17 rpm-devel-4.1-8x.ia64.rpm
-rw-r--r-- 1 2369 300 104653 Sep 17 21:17 rpm-python-4.1-8x.alpha.rpm
-rw-r--r-- 1 2369 300 97407 Sep 17 21:17 rpm-python-4.1-8x.i386.rpm
-rw-r--r-- 1 2369 300 132830 Sep 17 21:17 rpm-python-4.1-8x.ia64.rpm
226 Directory send OK.

387

1 If your goal is to install RPM on one of these systems, it might be a good idea to copy the appropriate binary package. That way, once you
have RPM running, you can reinstall it with the --force option to ensure that RPM is properly installed and configured.

ftp>

Although the version numbers may change, the types of files kept in this directory will not. Here's
the first group of files:

-rw-r--r-- 1 2369 300 79155 Sep 17 21:17 popt-1.7-8x.alpha.rpm
-rw-r--r-- 1 2369 300 69704 Sep 17 21:17 popt-1.7-8x.i386.rpm
-rw-r--r-- 1 2369 300 88284 Sep 17 21:17 popt-1.7-8x.ia64.rpm
-rw-r--r-- 1 2369 300 2647153 Sep 17 21:17 rpm-4.1-8x.alpha.rpm
-rw-r--r-- 1 2369 300 2222224 Sep 17 21:17 rpm-4.1-8x.i386.rpm
-rw-r--r-- 1 2369 300 3390500 Sep 17 21:17 rpm-4.1-8x.ia64.rpm

The files above are the binary package files for RPM version 4.1, release 8x (intended for Red Hat
Linux 8.x), on the Digital Alpha, the Intel x86, and the Intel IA-64. Note that the version number
will change in time, but the other parts of the file naming convention won't. As binary package files,
they must be installed using RPM. So if you don't have RPM yet, they won't do you much good. 1

Let's look at the next file:

-rw-r--r-- 1 2369 300 6469152 Sep 17 21:17 rpm-4.1-8x.src.rpm

This is the source package file for RPM version 4.1, release 8x. Like the binary packages, the source
package requires RPM to install — therefore, it cannot be used to perform an initial install of RPM.
Let's see what else there is here:

-rw-r--r-- 1 2369 300 3798135 Sep 17 21:17 rpm-devel-4.1-8x.alpha.rpm
-rw-r--r-- 1 2369 300 3259143 Sep 17 21:17 rpm-devel-4.1-8x.i386.rpm
-rw-r--r-- 1 2369 300 3978604 Sep 17 21:17 rpm-devel-4.1-8x.ia64.rpm

The files above are binary package files that contain the rpm-devel subpackage. The rpm-
devel package contains header files and the RPM library, and is used for developing programs that
can perform RPM-related functions. These files cannot be used to get RPM running. That leaves
two files left:

-rw-rw-r-- 1 root 97 278620 Jul 18 06:05 rpm-2.2.2-1.i386.cpio.gz
-rw-rw-r-- 1 root 97 356943 Jul 18 06:05 rpm-2.2.2.tar.gz

The first file is a gzipped cpio archive of the files comprising RPM. After uncompressing the file,
cpio can be used to extract the files and place them on your system. Note, however, that there is a
cpio archive for the i386 architecture only. To extract the files, issue the following command:

RPM-related Resources

388

zcat file.cpio.gz | (cd / ; cpio --extract)
#

(When actually issuing the command, file.cpio.gz should be replaced with the actual name of
the cpio archive.)

Note that the archive should be extracted using GNU cpio version 2.4.1 or greater. It may also be
necessary to issue the following command prior to using RPM:

mkdir /var/lib/rpm
#

The last file, rpm-2.2.2.tar.gz, contains the sources for RPM. Using it, you can build RPM
from scratch. This is the most involved option, but it is the only choice for people interested in port-
ing RPM to a new architecture. See Chapter 8, Miscellanea for an example of RPM being built from
the sources.

Where to Talk About RPM
As much as we've tried to make this book a comprehensive reference for RPM, there are going to be
times when you'll need additional help. The best way to connect with other that use RPM is to try
one of the following mailing lists.

The rpm-list Mailing List
Red Hat maintains a mailing list specifically for RPM. In order to subscribe to the list, it's necessary
to send a mail message to:

rpm-list-request@redhat.com

On the message's subject line, place the word subscribe. After a short delay, you should receive an
automated response with general information about the mailing list.

To send messages to the list, address them to:

rpm-list@redhat.com

As with other on-line forums, it's advisable to "lurk" for a while before sending anything to the list.
That way, you'll be able to see what types of questions are acceptable for the list. Let the list's name
be your guide; if the message you want to send doesn't have anything to do with RPM, you shouldn't
send it to rpm-list!

In general, the flavor of rpm-list is a bit biased towards RPM's development, building packages,
and issues surrounding the porting of RPM to other systems. If your question is more along the lines
of, How do I use RPM to install new software? consider reviewing the first half of this book and
lurking on rpm-list a while first.

The redhat-list Mailing List

RPM-related Resources

389

The redhat-list mailing list is meant to serve as a forum for users of Red Hat's Linux operating
system. If your questions concerns the use of RPM on Red Hat Linux, then the redhat-list is a
good place to start. To subscribe, send a message to:

redhat-list-request@redhat.com

On the message's subject line, place the word subscribe. After a short delay, you should receive an
automated response with general information about the mailing list. As with rpm-list, it's best to
lurk for a while before posting to the list

To send messages to the list, address them to:

redhat-list@redhat.com

The redhat-digest Mailing List
Some people might find the number of messages on redhat-list more than they can handle.
However, there is a digest version of the list available. Each digest consists of one or more messages
sent to redhat-list. The digest is sent out when the collected messages reach a certain size.
Therefore, a digest might have one very long message, or twenty smaller ones. In either case, you'll
have the collected knowledge of the Red Hat development team and their many customers delivered
in one message.

To subscribe to redhat-digest, send a message to:

redhat-digest-request@redhat.com

On the message's subject line, place the word subscribe. After a short delay, you should receive an
automated response with general information about the mailing list.

To send messages to the list, address them to:

redhat-list@redhat.com

As always, observe proper "netiquette" — lurk before you leap!

RPM On the World Wide Web
Up-to-date information on RPM can always be found at Red Hat's web site:

http://www.redhat.com/

RPM-related Resources

390

The site's content changes frequently, so it's impossible to specify an exact URL for RPM informa-
tion. However, the site is very well run, and always has a comprehensive table of contents as well as
a search engine. Either should make finding information on RPM easy.

RPM's License
RPM is licensed under the GNU General Public License, or as it's more commonly called, the GPL.
If you're not familiar with the GPL, it would be worthwhile to spend a few minutes looking it over.
The purpose behind the GPL is to ensure that GPL'ed software remains freely available.

"Freely available" doesn't necessarily mean "at no cost," although GPL'ed software is often available
by anonymous FTP. The idea behind the GPL is to make it impossible for anyone to take GPL'ed
code, and make it proprietary. But enough preliminaries! The best way to understand the GPL is to
read it:

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA 02139,
USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software — to make sure the software is free for all its users. This General Public Li-
cense applies to most of the Free Software Foundation's software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is covered by the GNU
Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Li-
censes are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

We protect your rights with two steps:

1. copyright the software, and

2. offer you this license which gives you legal permission to copy, distribute and/or modify the
software.

Also, for each author's protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed

RPM-related Resources

391

on, we want its recipients to know that what they have is not the original, so that any problems intro-
duced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed by the copy-
right holder saying it may be distributed under the terms of this General Public License. The
"Program", below, refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications and/or trans-
lated into another language. (Hereinafter, translation is included without limitation in the term
"modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output from
the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends on
what the Program does.

2. You may copy and distribute verbatim copies of the Program's source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an ap-
propriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print or
display an announcement including an appropriate copyright notice and a notice that there
is no warranty (or else, saying that you provide a warranty) and that users may redistribute
the program under these conditions, and telling the user how to view a copy of this Li-
cense. (Exception: if the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to print an announce-
ment.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole

RPM-related Resources

392

which is a work based on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written en-
tirely by you; rather, the intent is to exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for
a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if
you received the program in object code or executable form with such an offer, in accord
with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control compila-
tion and installation of the executable. However, as a special exception, the source code distrib-
uted need not include anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a desig-
nated place, then offering equivalent access to copy the source code from the same place counts
as distribution of the source code, even though third parties are not compelled to copy the
source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Pro-
gram is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

6. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or dis-
tributing the Program (or any work based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the recipient auto-
matically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recip-
ients' exercise of the rights granted herein. You are not responsible for enforcing compliance by
third parties to this License.

RPM-related Resources

393

8. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended to
apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software distrib-
uted through that system in reliance on consistent application of that system; it is up to the au-
thor/donor to decide if he or she is willing to distribute software through any other system and
a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version num-
ber of this License which applies to it and "any later version", you have the option of following
the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of this License, you
may choose any version ever published by the Free Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copy-
righted by the Free Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORM-
ANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECT-
IVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY

RPM-related Resources

394

AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE-
ING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use to the public, the
best way to achieve this is to make it free software which everyone can redistribute and change un-
der these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program name and a brief idea of what it does.>

Copyright © 19yy <name of author>

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

Gnomovision version 69, Copyright © 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
"show w". This is free software, and you are welcome to
redistribute it under certain conditions; type "show c" for
details.

The hypothetical commands "show w" and "show c" should show the appropriate parts of the Gen-
eral Public License. Of course, the commands you use may be called something other than "show
w" and "show c"; they could even be mouse-clicks or menu items — whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

RPM-related Resources

395

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which
makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking propriet-
ary applications with the library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

RPM-related Resources

396

1 When we say that keys are numbers, we aren't lying even though the example key doesn't look like a number. It has been processed so that
it can be concisely displayed using only printable characters.

Appendix G. An Introduction to PGP
Assuming you're not the curious type and haven't flipped your way back here, you are probably here
looking for some information on the program known as Pretty Good Privacy, or PGP.

PGP — Privacy for Regular People
PGP, or "Pretty Good Privacy", is a program that is intended to help make electronic mail more se-
cure. It does this by using sophisticated techniques known as public key encryption.

If you find yourself wondering what electronic mail and making information unreadable by spies
has to do with RPM, you have a good point. However, although PGP's claim to fame is the handling
of e-mail in total privacy, it has some other tricks up its sleeve.

Keys your Locksmith Wouldn't Understand
As we mentioned above, PGP uses public key encryption to do some of its magic. You might guess
from the name that this type of encryption involves keys of some sort. But, as you might imagine,
these are not keys that you can copy down at the local hardware store. They are numbers — really
large numbers. Here's what a key might look like 1 :

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.2

mQCNAzEpXjUAAAEEAKG4/V9oUSiDc9wIge6Bmg6erDGCLzmFyioAho8kDIJSrcmi
F9qTdPq+fj726pgW1iSb0Y7syZn9Y2lgQm5HkPODfNi8eWyTFSxbr8ygosLRClTP
xqHVhtInGrfZNLoSpv1LdWOme0yOpOQJnghdOMzKXpgf5g84vaUg6PHLopv5AAUR
tCpSZWQgSGF0IFNvZnR3YXJlLCBJbmMuIDxyZWRoYXRAcmVkaGF0LmNvbT6JAFUD
BRAxc0xcKO2uixUx6ZEBAQOfAfsGwmueeH3WcjngsAoZyremvyV3Q8C1YmY1EZC9
SWkQxdRKe7n2PY/WiA82Mvc+op1XGTkmqByvxM9Ax/dXh+peiQCVAwUQMXL7xiIS
axFDcvLNAQH5PAP/TdAOyVcuDkXfOPjN/TIjqKRPRt7k6Fm/ameRvzSqB0fMVHEE
5iZKi55Ep1AkBJ3wX257hvduZ/9juKSJjQNuW/FxcHazPU+7yLZmf27xIq7E0ihW
8zz9JNFWSA9+8vlCMBYwdP1a+DzVdwjbJcnOu3/Z/aCY2lYi9U45PzmtU8iJAJUD
BRAxU9GUGXO+IyM0cSUBAbWfA/9+lVfqcpFYkJIV4HuV5niVv7LW4ywxW/SftqCM
lXDXdJdoDbrvLtVYIGWeGwJ6bES6CoQiQjiW7/WaC3BY9ZITQE4hWOPQADzOnZPQ
fdkIIxuIUAUnU/YarasqvxCs5v/TygfWUTPLPSP+MqGqJcDF2UHXCiNAHrItse9M
h7etkYkAdQMFEDEp61/Nq6IpInoskQEB538C+wSIaCNNDOGxlxS5E2tClXRwMYf0
ymuKXs/srvIUjOO7xuIH4K7qcSSdI4eUwuXy6w5tWWR3xZ/XiygcLtKMi2IZIq0j
wmFq7MEk+Xp8MN7Icawkqj1/1p0p4EwKKkIU64kAlQMFEDEp6pZEcVNogr/H7QEB
jp4D/iblfiCzVTA5QhGeWOj1rRxWzohMvnngn29IJgdnN3zuQXB1/lbVV3zYciRH
NyvpynfcTcgORHNpAIxXDaZ7sd48/v7hHLarcR5kxuY0T75XOTGOKTOlFvb4XmcY
HZR2wSWSBteKezB5uK47A6uhwtvPokV0Owk9xPmBV+LPXkW4
=pnqV
-----END PGP PUBLIC KEY BLOCK-----

PGP uses two different types of keys: public and private. The public key, as its name suggests, can
be shared with anyone. The key shown above is, in fact, a public key. The private key, as its name
suggests, should be kept a secret. PGP creates keys in pairs — one private and one public. A key
pair must remain a pair; if one is lost, the other by itself is useless. Why? Because the two keys have
an interesting property that can be exploited in two ways:

• A message encrypted by a given public key can only be decrypted with the corresponding
private key.

397

2 Or at least that it didn't make it to you unchanged.

• A message encrypted by a given private key can only be decrypted with the corresponding pub-
lic key.

In the case of sending messages in total privacy, the key pairs are used in the first manner. It allows
two people to exchange private messages without first exchanging any "secret codes". The only re-
quirement is that each know the other's public key.

However, for RPM, the second method is the important one. Let's say a company needs to send you
a document, and you'd like to make sure it really did come from them. If the company first encryp-
ted the file with their private key and sent it to you, you would have an encrypted file you couldn't
read.

Or could you? If you have the company's public key, you should be able to decrypt it. In fact, if you
can't, you can be sure that the message you received did not come from them 2 !

It is this feature that is used by RPM. By using PGP's public key encryption, it is possible to not
only prove that a package file came from a certain person or persons, but also that it was not
changed somewhere along the line.

Are RPM Packages Encrypted?
In a word, no. Rather than being encrypted, RPM package files possess a digital signature. This is a
way of using encryption to attach a signature (again, basically a large number) to some information,
such that:

• The signature cannot be separated from the information. Any attempt to verify the signature
against any other information will fail.

• The signature can only be produced by one private key.

In the case of RPM, the information being signed is the contents of the .rpm file itself.

A digital signature is just like a regular signature. It doesn't obscure the contents of the document
being signed, it just provides a method of determining the authenticity of a document. Here is an ex-
ample of a digital signature turned into printable text:

-----BEGIN PGP SIGNATURE-----
Version: 2.6.3a
Charset: noconv

iQCVAwUBMXVGMFIa2NdXHZJZAQFe4AQAz0FZrHdH8o+zkIvcI/4ABg4gfE7cG0xE
Z2J9GVWD2zi4tG+s1+IWEY6Ae17kx925JKrzF4Ti2upAwTN2Pnb/x0G8WJQVKQzP
mZcD+XNnAaYCqFz8iIuAFVLchYeWj1Pqxxq0weGCtjQIrpzrmGxV7xXzK0jus+6V
rML3TxQSwdA=
=T9Mc
-----END PGP SIGNATURE-----

Do All RPM Packages Have Digital Signatures?
Again, no. In a perfect world, every .rpm file would be signed. However, RPM has no formal re-
quirement that this be the case. There is also no requirement that you do anything special with a
signed .rpm file. Think of it as an extra feature that you can take advantage of, or not — it's strictly
your choice.

An Introduction to PGP

398

So Much to Cover, So Little Time
PGP has a wealth of features, 99% of which we will not cover in this book. For more information on
the basics of encryption, Applied Cryptography, by Bruce Schneier, contains a wealth of informa-
tion on the subject. For more details on PGP specifically, O'Reilly's PGP: Pretty Good Privacy by
Simson Garfinkel is an excellent reference.

If you'd rather surf the 'Net, use your favorite World Wide Web index to hunt for "crypto" or "PGP",
and you'll be in business.

Installing PGP for RPM's Use
To use RPM's PGP-related capabilities, you'll need to have PGP installed on your system. If it's in-
stalled already, you should be able to flip to the chapters on verifying package signatures and sign-
ing packages and be in business in a matter of minutes. Otherwise, read on for a thumbnail sketch of
what's required to install PGP.

Obtaining PGP
The first step in being able to verify .rpm files is to get a copy of PGP. Unfortunately, this is not
quite as simple as it might sound. The reason is that PGP is very controversial stuff.

Why the controversy? It centers on PGP's primary mission — to provide a means of communicating
with others in complete privacy. As we've discussed, PGP uses encryption to provide this privacy.
Good encryption. Very good encryption. Encryption so good, it appears some of the world's govern-
ments consider PGP a threat to their national security.

Know Your Laws!

Various countries have differing stances on the use of "strong encryption" products such as PGP. In
some countries, possession of encryption software is strictly forbidden. Other countries attempt to
control the flow of encryption technology into (or out of) their country. It is vital you know your
country's laws, lest you find yourself in prison, or possibly in front of a firing squad!

Patent/Licensing Issues Surrounding PGP

Over and above PGP's legal status, there are other aspects to PGP that people living in the U.S. and
Canada should keep in mind:

• PGP is free — for non-commercial use only. If you are going to use PGP for business purposes,
you should look into getting a commercial copy. PGP is marketed in the United States by:

Pretty Good Privacy, Inc.

2121 S. El Camino Real

Suite 902

San Mateo, CA 94403
(415) 572-0430
(415) 572-1932

http://www.pgp.com/

An Introduction to PGP

399

3 Note that there are no commercial restrictions regarding PGP in countries other than the U.S. and Canada.

• Part of the software that comprises PGP is protected by several United States patents. Versions
of PGP approved for use in the U.S. contain a licensed version of this software, known as
RSAREF. RSAREF includes a patent license that allows the use of the software in noncommer-
cial settings only. Commercial use of the technology contained in RSAREF requires a separate
license. This is one reason why there are restrictions on the commercial use of PGP in the United
States and Canada.

While people outside the U.S. and Canada can use RSAREF-based PGP, they will probably
choose the so-called "international" version. This version replaces RSAREF with software
known as MPILIB. MPILIB is, in general, faster than RSAREF, but it cannot legally be used in
the United States or Canada.

To summarize, if you are using PGP for commercial purposes in the U.S. or Canada, you'll need to
purchase it. Otherwise, people living in the U.S. or Canada should use a version of PGP incorporat-
ing RSAREF. People in other countries can use any version of PGP they desire, though they'll prob-
ably choose the MPILIB-based "international" version 3 .

Getting RSAREF-based PGP

The official source for the latest version of PGP based on RSAREF is the Massachusetts Institute of
Technology. Due to the restrictions on the export of encryption technology, the process is somewhat
convoluted. The easiest way to obtain PGP from the official MIT archive is to use the World Wide
Web. Point your web browser at:

http://web.mit.edu/network/pgp.html

Simply follow the steps, and you'll have the necessary software on your system in no time.

There is a more cumbersome method that doesn't use the Web. It involves first using anonymous ftp
to obtain several files of instructions and license agreements. You will then be directed to use telnet
to obtain the name of a temporary ftp directory containing the PGP software. Finally, you can use
anonymous ftp to retrieve the software. To start this process, ftp to:

ftp://net-dist.mit.edu

Then change directory to:

/pub/PGP

Obtain a copy of the file README and follow the instructions in it exactly.

If all this seems like too much trouble, there is another alternative. You can find copies of PGP on
just about any BBS, FTP, or Web site advertising freely available software. Be aware, however, that
"Floyd's Storm Door and BBS Company" may not be as trustworthy a place as MIT to obtain en-
cryption software. It's really a question of how paranoid you are.

An Introduction to PGP

400

http://web.mit.edu/network/pgp.html
ftp://net-dist.mit.edu

Outside the United States and Canada

For people living in other countries, it is much easier to find PGP (depending on the legality of en-
cryption software, of course). Try any of the places you'd normally look for free software. Keep in
mind, however, that you shouldn't download PGP from any sites in the U.S. Doing so is considered
an "export" of munitions, and can get the people responsible for the site in deep trouble. Wherever
you eventually get PGP from, since the patents that complicate matters for the U.S. do not apply
abroad, you'll probably end up with the "international" versions of PGP.

Building PGP
Building PGP is mostly a matter of following instructions. However, users of ELF-based Linux dis-
tributions (Such as Red Hat Linux) will find that PGP will not build. The problem, according to the
PGP FAQ, is that two files do not properly handle the C preprocessor directives that affect support
for ELF. The changes are to two files: 80386.S and zmatch.S. Near the beginning of each,
you'll find either a #ifndef or a #ifdef for SYSV. If you find:

#ifndef SYSV

It should be changed to read:

#if !defined(SYSV) && !defined(__ELF__)

If you find:

#ifdef SYSV

It should be changed to read:

#if defined(SYSV) || defined(__ELF__)

After making these changes, PGP should build with no problems.

Ready to Go!
After building and installing PGP, you're ready to start using RPM's package signature capabilities.
If your primary interest is in checking the signatures on packages built by someone else, Chapter 7,
Using RPM to Verify Package Files will tell you everything you need to know.

On the other hand, if you are a package builder and would like to start signing packages, Chapter 17,
Adding PGP Signatures to a Package will have you signing packages in no time.

An Introduction to PGP

401

Index
Symbols
%attr directive, 191, 382
%build script, 175
%build scriptlet, 375
%check script, 175
%check scriptlet, 376
%clean script, 176
%clean scriptlet, 376
%config directive, 191, 382
%defattr Directive, 192
%defattr directive, 382
%description tag, 161, 368
%dir directive, 196, 383
%doc directive, 191, 382
%docdir directive, 194, 383
%else conditional, 200, 385
%endif conditional, 200, 386
%ghost directive, 192
%ifarch conditional, 199, 259, 384
%ifnarch conditional, 199, 259, 385
%ifnos conditional, 200, 259, 385
%ifos conditional, 200, 259, 385
%install script, 175
%install scriptlet, 376
%package directive, 197, 239, 384

-n option, 198, 240, 384
%patch macro, 187, 380

-b option, 188
-E option, 188
-P option, 187
-p option, 188
compressed patches, 189
example of, 188
options to, 380

%post script, 177
%post scriptlet, 377
%postun script, 177
%postun scriptlet, 377
%pre script, 177
%pre scriptlet, 377
%prep script, 175
%prep scriptlet, 375
%preun script, 177
%preun scriptlet, 377
%setup macro, 178, 378

-a option, 182
-b option, 181
-c option, 180
-D option, 181
-n option, 179
-T option, 181
options to, 378
use in multi-source spec files, 183

%verify directive, 193, 383
%verifyscript script, 178
%verifyscript scriptlet, 378
--addsign option, 235

limitations to, 236

--buildarch option, 147
--buildos option, 147
--buildroot option, 151

warning, 153
--clean option, 150
--dbpath option, 45, 51, 81, 94
--dump option, 73
--excludedocs, 70
--excludedocs option, 41
--force option, 41, 58
--ftpport option, 45
--ftpproxy option, 45
--help option, 106
--ignorearch option, 46
--ignoreos option, 46
--includedocs option, 42
--initdb option, 105
--nodeps option, 40, 50, 92
--nofiles option, 93
--nopgp option, 102
--noscripts option, 44, 50, 58, 92
--oldpackage option, 57
--percent option, 44
--prefix option, 43
--provides option, 71
--queryformat option, 74

carriage control in, 75
example, 43
literal text in, 75
tags for, 76, 357

ARCH, 360
ARCHIVESIZE, 363
AUTOREQPROV, 365
BUILDHOST, 358
BUILDROOT, 365
BUILDTIME, 358
CHANGELOG, 359
CONFLICTFLAGS, 364
CONFLICTNAME, 364
CONFLICTVERSION, 364
DEFAULTPREFIX, 365
DESCRIPTION, 358
DISTRIBUTION, 358
EPOCH, 357
EXCLUDE, 363
EXCLUDEARCH, 365
EXCLUDEOS, 365
EXCLUSIVE, 363
EXCLUSIVEARCH, 365
EXCLUSIVEOS, 365
FILEFLAGS, 362
FILEGIDS, 361
FILEGROUPNAME, 362
FILELINKTOS, 362
FILEMD5S, 362
FILEMODES, 361
FILEMTIMES, 362
FILENAMES, 360
FILERDEVS, 361
FILESIZES, 361
FILESTATES, 361
FILEUIDS, 361
FILEUSERNAME, 362

402

FILEVERIFYFLAGS, 363
GIF, 359
GROUP, 359
ICON, 363
INSTALLPREFIX, 365
INSTALLTIME, 358
LICENSE, 359
NAME, 357
NOPATCH, 364
NOSOURCE, 364
OS, 360
PACKAGER, 359
PATCH, 359
POSTIN, 360
POSTUN, 360
PREIN, 360
PREUN, 360
PROVIDES, 363
RELEASE, 357
REQUIREFLAGS, 363
REQUIRENAME, 364
REQUIREVERSION, 364
ROOT, 362
RPMVERSION, 366
SIZE, 358
SOURCE, 359
SOURCERPM, 363
SUMMARY, 358
TRIGGERFLAGS, 366
TRIGGERINDEX, 366
TRIGGERNAME, 366
TRIGGERSCRIPTS, 366
TRIGGERVERSION, 366
URL, 360
VENDOR, 359
VERIFYSCRIPT, 366
VERSION, 357
XPM, 359

tags, array iterators, 78
tags, iterating single-entry, 79
tags, listing available, 79
tags, modifiers, 77
tags, width and justification, 76

--quiet option, 106, 155
--rcfile option, 44, 51, 81, 95, 103, 155, 342
--rebuild option, 156
--rebuilddb option, 104
--recompile option, 156
--replacefiles option, 36, 41, 58

interaction with config files, 38
problems from using, 39

--replacepkgs option, 36, 41, 58, 58
--requires option, 72
--resign option, 234

limitations to, 235
--root option, 45, 51, 81, 95
--scripts option, 73
--short-circuit option, 145
--showrc, 339
--sign option, 148, 233

using with multiple builds, 234
--test option, 35, 49, 149
--timecheck option, 153

--version option, 107
--whatprovides option, 66
--whatrequires option, 67
-a option, 63, 90
-c option, 69
-d option, 69
-f option, 63, 90

hint when using, 64
-g option, 66, 91
-h option, 34
-i option, 67
-l option, 68
-p option, 65, 91
-s option, 70
-v option, 33, 69, 93, 99
-vv option, 34, 48, 80, 94, 102, 154

A
acknowledgements, xv
adding dependencies (see dependencies, adding)
architecture (see multi-platform package building)
(see RPM, philosophy behind, multi-architecture)
architectures, support for multiple, 26
archive (see format, RPM file, parts of, archive)
area, build (see build area)
arguments (see scripts, install/erase-time, arguments
in)
attributes, file (see file attributes verified) (see file at-
tributes, specifying)
automatic dependencies (see dependencies, automatic)
autoreqprov tag, 166, 205
AutoReqProv: tag, 372

B
book, sections of, xiv
build area

alternate, 224
building in, 225
creating, 224
using, 225

build roots
danger using, 223
defining, 220
issues surrounding, 223

building packages (see rpmbuild -b)
buildroot tag, 170
BuildRoot: tag, 373

C
command options (see the option itself)
conditionals (see platform-dependent, conditionals)
(see spec file, conditionals in) (see the conditional it-
self)
config files, 20, 22, 24, 30, 31, 33, 33, 38, 41, 47, 51,
54, 54, 69, 70, 73, 78, 81, 88, 120, 213, 213, 214, 216,
216
configuration files (see config files)
conflicts tag, 165
Conflicts tag, 208
Conflicts: tag, 371

Index

403

D
database, rebuilding RPM (see --rebuilddb option)
(see RPM, command reference, rebuild database
mode)
dependencies

adding, 202
automatically added, 202

example of, 204
autoreqprov tag, 205
basic concepts, 202
Conflicts tag, 208
Context Marked Dependencies, 208
epoch numbers, using, 206
manually added, 205
PreReq tag, 208
Provides tag, 208
Requires tag, 205
scripts related to, 203

find-provides, 203
find-requires, 203

version requirements, adding, 206
virtual packages, 209

directives (see spec file) (see the directive itself)
distribution tag, 163
Distribution: tag, 369
Doug Hoffman (see Hoffman, Doug)

E
environment variables (see scripts, build-time, envir-
onment variables in) (see scripts, install/erase-time,
environment variables in)
epoch numbers (see dependencies, epoch numbers, us-
ing) (see spec file, tags in, epoch)
epoch tag, 166
Epoch: tag, 371
erasing packages (see rpm -e)
Ewing, Marc, xv, 24, 25, 25, 28
examples building packages (see package building)
excludearch tag, 167, 256
ExcludeArch: tag, 372
excludeos tag, 169, 256
ExcludeOs: tag, 373
exclusivearch tag, 168, 257
ExclusiveArch: tag, 372
exclusiveos tag, 169, 257
ExclusiveOs: tag, 373

F
Faith, Rik, 23, 24
file attributes verified (see rpm -V, attributes verified)
file attributes, specifying, 227
file, spec (see spec file)
files, configuration (see config files)
find-provides script, 203
find-requires script, 203
format, package file (see format, RPM file)
format, RPM file, 324

caveats, 325
file() command,identifying with, 337
naming convention, 324

parts of, 325
archive, 335
header, 332
header structure, 328
header, analysis of, 332
header, tags used in, 333
lead, 325
lead, reduced use of, 327
signature, 329
signature, analysis of, 329

tools for studying, 336
FTP

package specification using, 31
specifying non-standard port with, 32
specifying username and password with, 32

G
General Public License (see GPL)
GNU General Public License (see GPL)
GPL, 391
group tag, 164
Group: tag, 370

H
header (see format, RPM file, parts of, header)
history, Linux and RPM, xiv
Hoffman, Doug, 24

I
icon tag, 163
Icon: tag, 369
information

package-wide, 27
per-file, 27

installing packages (see rpm -i)

L
label, package (see package label)
lead (see format, RPM file, parts of, lead)
library functions, RPM (see rpmlib)
license tag, 162
License: tag, 369
Linux and RPM history, xiv

M
Marc Ewing (see Ewing, Marc)
multi-platform package building, 252

features supporting, 253
hints, 260
platform detection, 253
reasons for, 252

N
name tag, 160
Name: tag, 367
nopatch tag, 173
NoPatch: tag, 374
nosource tag, 171
NoSource: tag, 374

Index

404

numbers, epoch (see dependencies, epoch numbers,
using) (see spec file, tags in, epoch)

O
options, command (see the option itself)

P
package

advantages of, 21
building anywhere, 220
contents of, 26
labels, 26
labels vs. names, 27
management of

how to, 22
introduction, 20
reasons for, 21

reasons for, 20
relocatable (see relocatable packages)
virtual (see dependencies, virtual packages)
what is it, 21

package building
real-world example, 261

%files list, adding, 269
%files list, finalizing, 275
build area, creating, 261
building with RPM, 272
building, initial, 265
directives, adding, 277
initial build, 261
initial build, installing, 264
initial build, performing, 262
installing with RPM, 272
overview, 261
package files, creating, 273
packages, testing, 280
patches, applying w/RPM, 270
patches, generating, 265
scripts, adding built-time, 269
scripts, creating, 281
sources, unpacking w/RPM, 269
spec file, first-cut, 267
testing after build, 273

simple example, 125
%files list, creating, 130
build directory, creating, 125
package, building, 131
scripts, %clean, 130
scripts, install/uninstall, 130
sources, obtaining, 125
spec file, %build section, 129
spec file, %files list, 129
spec file, %install section, 129
spec file, %prep section, 128
spec file, creating, 126
spec file, preamble, 126
troubleshooting, 134

package file format (see format, RPM file)
package label, 62, 89
package-wide information (see information, package-
wide)
packager tag, 164

Packager: tag, 370
packages

building (see rpmbuild -b)
erasing (see rpm -e)
files, verifying (see rpm -K)
getting information about (see rpm -q)
installing (see rpm -i)
querying (see rpm -q)
removing (see rpm -e)
uninstalling (see rpm -e)
upgrading (see rpm -U)
verifying installed (see rpm -V)

patch tag, 172
Patch: tag, 374
per-file information (see information, per-file)
PGP

building, 401
getting more information on, 399
introduction to, 397
legal, patent issues, 399
obtaining, 399

"international" version, 401
RSAREF-based version, 400

overview of, 397
RPM's use of, 398
setting up for RPM's use, 399
signatures

adding, 230
configuring RPM for, 232
key pair generation, 230
reasons for, 230
signing packages, 233

platform information, overriding at build-time, 255
platform information, overriding at install-time, 256
platform-dependent

conditionals, 257
%ifarch, 259
%ifnarch, 259
%ifnos, 259
%ifos, 259
features of, 258
nesting, 258

rpmrc file entries, 253
arch_canon, 254
arch_compat, 255
buildarch_translate, 254
buildos_translate, 254
optflags, 256
os_canon, 254
os_compat, 255

tags, 256
excludearch, 256
excludeos, 256
exclusivearch, 257
exclusiveos, 257

PM (see RPM, ancestors of, PM)
PMS (see RPM, ancestors of, PMS)
prefix tag, 169, 211, 239
Prefix: tag, 373
PreReq tag, 208
Pretty Good Privacy (see PGP)
provides tag, 165
Provides tag, 208

Index

405

Provides: tag, 370

Q
querying packages (see rpm -q)

R
recursion (see recursion)
release tag, 161
Release: tag, 368
relocatable packages, 211

%files list restrictions, 213
building, 214
prefix tag, 211
reasons for, 211
requirements, 212
software requirements, 213
testing, 216

removing packages (see rpm -e)
requires tag, 165
Requires tag, 205
Requires: tag, 370
Rik Faith (see Faith Rik)
root, build (see build roots)
RPM

ancestors of, 23
PM, 24
PMS, 23
RPM version 1, 24
RPM version 2, 25
RPP, 23

basics of developing with, 121
command reference, 350

add signature mode, 355
build mode, 353
check signature mode, 355
erase mode, 353
global options, 350
informational options, 350
initialize database mode, 355
install mode, 352
query mode, 350
rebuild database mode, 355
rebuild mode, 354
recompile mode, 354
resign mode, 355
upgrade mode, 352
verify mode, 351

creating patches for, 121
design goals of, 25
inputs to, 121

patches, 121
sources, 121
spec file, 122

library functions (see rpmlib)
license, 391
mailing list

redhat-digest, 390
redhat-list, 389
rpm-list, 389

obtaining, 387
files to download, 387
main download site, 387

outputs from, 123
binary package, 124
source package, 123

philosophy behind, 118
ease of use, 120
easy builds, 119
multi-architecture, 119
multi-operating system, 119
pristine sources, 118

resources related to, 387
spec file

%build section of, 122
%files list, 123
%install section of, 122
%prep section of, 122
preamble, 122
scripts, 122

support, information for, 389
what it does, 123
WWW resources, 390

rpm -e, 47
basic command, 48
config file handling, 51
options, 48
problems using, 52
what it does, 47

rpm -i, 29
options, 33
overview, 30
performing, 31
warning message, 33

rpm -K, 97
additional software used by, 97
basic use, 98
configuring PGP for use by, 97
example of failed verification, 100
options, 99, 102
output when missing public key, 100
output when package unsigned, 100
what it does, 97

rpm -q, 60
examples using, 81
finding config files with, 81
finding documentation with, 82
finding largest packages with, 83
finding recently installed packages with, 83
finding similar packages with, 82
information selection options, 67
options, 61
package selection options, 61
querying uninstalled packages with, 82
what it does, 61

rpm -U, 53
as replacement for rpm -i, 56
basic command, 56
config file handling, 54
options, 57
what it does, 54

rpm -V, 85
attributes verified, 87

file group, 87
file mode, 87
file ownership, 87

Index

406

file size, 87
major number, 87
MD5 checksum, 87
minor number, 87
modification time, 88
symbolic link, 88

options, 89
output of, 88
verification, control of, 95
what it does, 85
what it verifies, 86

RPM database, rebuilding (see --rebuilddb option)
(see RPM, command reference, rebuild database
mode)
RPM file format (see format, RPM file)
RPM version 1 (see RPM, ancestors of, RPM version
1)
RPM version 2 (see RPM, ancestors of, RPM version
2)
rpm2cpio

use of, 107
extracting files in package, 108
listing files in package, 108

what it does, 107
rpmbuild, 136

build stages of, 137
a, 142
b, 141
c, 138
i, 139
l, 143
p, 137

options, 145
related commands, 155
what it does, 137

rpmlib, 25
examples using, 311
functions

dependency processing, 302
error handling, 288
header entry manipulation, 308
header iterator, 310
header manipulation, 306
output control, 304
package information, 289
package manipulation, 298
package/file verification, 301
RPM database manipulation, 293
RPM database search, 295
RPM database traversal, 294
rpmrc-related, 291
signature verification, 305
variable manipulation, 290

guide to using, 288
overview, 288

rpmlib functions, list of, 288
dbiFreeIndexRecord(), 295
headerAddEntry(), 309
headerCopy(), 307
headerDump(), 308
headerFree(), 308
headerFreeIterator(), 310
headerGetEntry(), 309

headerInitIterator(), 310
headerIsEntry(), 309
headerNew(), 308
headerNextIterator(), 310
headerRead(), 306
headerSizeof(), 307
headerWrite(), 307
rpmArchScore(), 292
rpmdbClose(), 293
rpmdbFindByConflicts(), 297
rpmdbFindByFile(), 295
rpmdbFindByGroup(), 296
rpmdbFindByProvides(), 297
rpmdbFindByRequiredBy(), 297
rpmdbFindPackage(), 296
rpmdbFirstRecNum(), 294
rpmdbGetRecord(), 294
rpmdbInit(), 293
rpmdbNextRecNum(), 294
rpmdbOpen(), 293
rpmdbRebuild(), 294
rpmdepAddPackage(), 302
rpmdepAvailablePackage(), 303
rpmdepCheck(), 303
rpmdepDependencies(), 302
rpmdepDone(), 304
rpmdepFreeConflicts(), 304
rpmdepRemovePackage(), 303
rpmdepUpgradePackage(), 303
rpmErrorCode(), 288
rpmErrorSetCallback(), 289
rpmErrorString(), 288
rpmFreeSignature(), 306
rpmGetArchName(), 292
rpmGetBooleanVar(), 290
rpmGetOsName(), 292
rpmGetVar(), 290
rpmGetVerbosity(), 305
rpmIncreaseVerbosity(), 304
rpmInstallPackage(), 299
rpmInstallSourcePackage(), 298
rpmIsDebug(), 305
rpmIsVerbose(), 305
rpmNotifyFunction(), 300
rpmOsScore(), 292
rpmReadConfigFiles(), 291
rpmReadPackageHeader(), 290
rpmReadPackageInfo(), 289
rpmRemovePackage(), 300
rpmSetVar(), 291
rpmSetVerbosity(), 304
rpmShowRC(), 292
rpmVerifyFile(), 301
rpmVerifyScript(), 301
rpmVerifySignature(), 305

rpmrc file, 339
entries, 343

arch_canon, 254, 343
arch_compat, 255, 344
buildarch_translate, 254
buildarchtranslate, 343
builddir, 345
buildos_translate, 254

Index

407

buildostranslate, 344
buildroot, 345
cpiobin, 345
dbpath, 345
defaultdocdir, 345
distribution, 345
excludedocs, 42, 345
ftpport, 346
ftpproxy, 346
messagelevel, 346
netsharedpath, 71, 346
optflags, 346
os_canon, 254, 343
os_compat, 255, 344
packager, 347
pgp_name, 347
pgp_path, 347
require_distribution, 347
require_icon, 347
require_vendor, 348
rpmdir, 348
signature, 348
sourcedir, 348
specdir, 348
srcrpmdir, 348
timecheck, 349
tmppath, 349
topdir, 349
vendor, 349

locations of, 340
/etc/rpmrc, 342
/usr/lib/rpmrc, 340
~/.rpmrc, 342

syntax of, 342
RPP (see RPM, ancestors of, RPP)

S
scripts (see RPM, spec file, scripts) (see the script it-
self)

build-time, 173
environment variables in, 174

install/erase-time, 176
arguments in, 176
environment variables in, 176

verification-time, 178
sections of book, xiv
signature (see format, RPM file, parts of, signature)
(see PGP, signatures) (see RPM, command reference,
add signature mode) (see RPM, command reference,
check signature mode)
source package files

installing, 110
use of, 109

source tag, 170
Source: tag, 374
spec file

%files list directives, 190
%files list in, 190, 381

-f option, 197
comments in, 159, 367
conditionals in, 199

%else, 385

%endif, 386
%ifarch, 384
%ifnarch, 385
%ifnos, 385
%ifos, 385

contents of, 159, 367
directives in

%attr, 382
%config, 382
%defattr, 382
%dir, 383
%doc, 382
%docdir, 383
%package, options to, 384
%verify, 383

macros in, 178
%patch, 380
%patch, options to, 380
%setup, 378
%setup, options to, 378

scriptlets
%build, 375
%check, 376
%clean, 376
%install, 376
%post, 377
%postun, 377
%pre, 377
%prep, 375
%preun, 377
%verifyscript, 378

scripts in, 173
tags in, 159

%description, 368
AutoReqProv:, 372
BuildRoot:, 373
Conflicts:, 371
Distribution:, 369
Epoch:, 371
ExcludeArch:, 372
ExcludeOs:, 373
ExclusiveArch:, 372
ExclusiveOs:, 373
Group:, 370
Icon:, 369
License:, 369
Name:, 367
NoSource:, 374
Packager:, 370
Prefix:, 373
Provides:, 370
Release:, 368
Requires:, 370
Source:, 374
Summary:, 368
URL:, 369
Vendor:, 369
Version:, 367

subpackages, 238
%files list changes, 243
%package directive, 239

-n option, 240
build-time scripts, unchanged, 246

Index

408

building, 248
definition of, 238
example requirements, 238
script changes, 245
scripts, testing, 251
spec file changes, 239
tags required by, 241
testing, 249
why needed, 238

summary tag, 162
Summary: tag, 368

T
tags

%description, 161
autoreqprov, 166
buildroot, 170
conflicts, 165
distribution, 163
epoch, 166
excludearch, 167
excludeos, 169
exclusivearch, 168
exclusiveos, 169
group, 164
icon, 163
license, 162
name, 160
nopatch, 173
nosource, 171
packager, 164
patch, 172
prefix, 169
provides, 165
release, 161
requires, 165
source, 170
summary, 162
url, 163
vendor, 163
version, 160

tags, --queryformat (see --queryformat option, tags
for)
tags, dependency-related (see dependencies)
Troan, Erik, xv, 24, 25, 25, 28

U
uninstalling packages (see rpm -e)
upgrading packages (see rpm -U)
URL, 31, 45, 66, 163, 170, 172

package specification using, 31
specifying non-standard port with, 32
specifying username and password with, 32

url tag, 163
URL: tag, 369

V
variables, environment (see scripts, build-time, envir-
onment variables in) (see scripts, install/erase-time,
environment variables in)
vendor tag, 163

Vendor: tag, 369
verifying installed packages (see rpm -V)
verifying package files (see rpm -K)
version tag, 160
Version: tag, 367
virtual packages (see dependencies, virtual packages)

Index

409

